MANUEL DE L'UTILISATEUR

MINIBRUTE SE ANALOG SYNTHESIZER

GESTION DE PROJET

Frédéric BRUN Romain DEJOIE

CONCEPTION ELECTRONIQUE

Yves USSON Bruno PILLET François BEST Laurent BARET Robert BOCQUIER Antoine BACK

CONCEPTION GRAPHIQUE

Axel HARTMANN (Design Box)
Daniel VESTER
Morgan PERRIER

INDUSTRIALISATION

Nicolas DUBOIS

MANUEL

Yves USSON Craig ANDERTON Antoine BACK Yasu TANAKA Noritaka UBUKATA

NOUS REMERCIONS CHALEUREUSEMENT:

Arnaud REBOTINI, Étienne JAUMET, Jean-Benoît DUNCKEL, Simon TARRICONE, Glen DARCEY, Frank ORLICH, Jean-Michel BLANCHET, Frédéric MESLIN, Mathieu BRUN, Gérard BURACCHINI.

1 édition: Février 2014

Les informations contenues dans ce mode d'emploi sont sujettes à changements sans préavis et ne représentent aucun engagement de la part d'ARTURIA. L'unité physique et le produit logiciel décrits dans ce mode d'emploi sont fournis dans le cadre d'un contrat de licence ou de non divulgation. Le contrat de licence spécifie les conditions générales de son utilisation légale.

Aucune partie de ce mode d'emploi ne peut être produite ou transmise sous aucune forme ou dans un quelconque autre but que l'utilisation personnelle de l'acquéreur, sans la permission écrite explicite d'ARTURIA S.A. Tous les autres produits, logos ou noms de société employés dans ce mode d'emploi sont des marques commerciales ou déposées de leurs détenteurs.

© ARTURIA S.A. 1999-2012, tous droits réservés.

ARTURIA S.A. 30, chemin du Vieux Chêne 38240 Meylan FRANCE http://www.arturia.com

TABLE DES MATIÈRES

ı	Introduction	5
2	2 Installation	9
	2.1 Précautions d'utilisation	
	2.2 Enregistrez votre instrument	
	2.3 Raccordement du MiniBrute à votre environnement	
	2.4 Mise en chauffe et ajustements généraux	
3	,	
J	3.1 Créez votre premier son : le « patch de base »	
	3.2 Ajouter un peu de vibrato	
	3.3 Peaufiner l'enveloppe	
	3.4 Rencontre avec le LFO	
	3.5 Créer des séquences	
	3.5.1 Enregistrement d'un modèle de base	
	3.5.2 Insertion des silences	
4	Description générale	20
	4.1 Architecture d'un synthétiseur analogique	20
	4.1.1 Générateurs de signaux	20
	4.1.1.1 Générateur de signaux harmoniques (oscillateurs)	20
	4.1.1.2 Générateur de signaux non-harmoniques	
	4.1.2 Enrichisseurs de signaux	
	4.1.3.1 Qu'est ce qu'un filtre?	
	4.1.3.2 Types de filtres: Low-pass, Band-pass, High-pass & Notch	23
	4.1.3.3 Résonance	
	4.1.4 Amplificateur	
	4.1.6 Interface de jeu	
	4.1.7 Entrées et sorties	
	4.1.8 Diagramme de fonctionnement	
	4.2 Panneau avant	30
	4.2.1 L'oscillateur et le mélangeur de signaux	
	4.2.1.1 Les formes d'ondes	
	Carré et pulsation modulée	
	Triangle et Metalizer	
	Sous-oscillateur (Sub Osc) Bruit	
	Audio In	
	4.2.2 Le filtre	
	4.2.2.1 Mode	
	4.2.2.3 Résonance	
	4.2.2.4 Amplitude d'enveloppe	33
	4.2.2.5 Suivi clavier	
	4.2.2.6 Vitesse d'enveloppe	
	4.2.2.7 Enveloppe de filtre	
	4.2.3.1 Enveloppe d'amplification	
	4.2.4 Les contrôles	
	4.2.4.1 Molette de modulation	
	4.2.4.2 Aftertouch	
	4.2.4.3 Étendue du pitch-bend	
	4.2.5 Vibrato	

	4.2.	6 LFO	36
		4.2.6.1 Forme d'onde	36
		4.2.6.2 Fréquence	
		4.2.6.3 Horloge	
		4.2.6.4 Routage de modulation	
		PWM & Metalizer	
		Pitch	
		Filter	
	4.2.	•	
	4.2.	Pattern	
		Play/Record	
		Rate	38
		Tap / Rest	
		Swing	
		Gate Length	
	4.2.		
		4.2.8.1 Clavier	
		4.2.8.2 Molettes	
		4.2.8.3 Octave	
		4.2.8.4 Brute Factor	
		4.2.8.5 Volume casque	
		4.2.8.6 Volume général	
		4.2.8.7 Accord général	41
	4.3	Panneau arrière	42
	4.3.		
	4.3.	2 USB	42
	4.3.	3 MIDI	42
	4.3.	4 Gate Source	42
	4.3.		
	4.3.	- , -	
	4.3.	- ,	
	4.4	Logiciel de configuration: MiniBrute Connection	
5	U	tiliser votre MiniBrute	45
•	5.1	Créons un son de base	
	5.2	Modulations du son	
	5.3	Traitement des sons externes	
6	N	lotes legales	
	6.1	Exclusion de responsabilité pour les dommages indirects	
	6.2	FCC Information (USA)	49
	6.3	Canada	
	6.4	Europe	
	J. T		

1 INTRODUCTION

Félicitations, et merci d'avoir acheté le synthétiseur analogique ARTURIA MiniBrute. Vous possédez maintenant ce que beaucoup de musiciens considèrent comme le synthétiseur analogique le plus versatile, le plus puissant et le plus « sonore » de sa catégorie.

Le MiniBrute est l'aboutissement d'une longue (et savoureuse!) collaboration entre les ingénieurs d'ARTURIA et le « gourou » de la synthèse analogique M. Yves USSON.

Depuis la fin des années 1990, la société française ARTURIA est renommée auprès des musiciens et des critiques pour ses exceptionnelles émulations logicielles des vénérables synthétiseurs analogiques des années 1960 à 1980. Du Modular V en 2004, au système modulaire de nouvelle génération Origin introduit en 2010 ; du premier synthétiseur hybride de l'histoire Analog Factory Experience en 2008, à l'Oberheim SEM V sorti fin 2011, notre passion pour les synthétiseurs et la pureté sonore a offert aux musiciens les plus exigeants les meilleurs instruments logiciels pour la production audio professionnelle.

Aperçu de quelques instruments ARTURIA logiciels, hybrides et matériels

Après avoir recréé des synthétiseurs analogiques en transposant les meilleurs de ces instruments classiques en algorithmes DSP sophistiqués, il était temps pour ARTURIA de concevoir son propre instrument analogique. Mais reproduire tel ou tel circuit analogique est un défi différent que de concevoir un circuit analogique original pleinement satisfaisant, aussi nous sommes-nous adjoints l'aide d'Yves USSON, honorable activiste de la synthèse et concepteur de circuits analogiques depuis plus de trois décennies.

Par-delà ses travaux de chercheur en microscopie biomoléculaire, ses clones de modules initialement conçus par Bob Moog, ARP ou EMS, ainsi que ses propres conceptions, sont éminemment renommés dans le monde « modulaire » et régulièrement produits sous licence par quelques fabricants spécialisés.

De plus, il se rend toujours disponible pour partager son expérience et transmettre sa connaissance à autrui. Tous ses schémas sont ouverts à la communauté D.I.Y.: la plupart de ses travaux peuvent être ainsi consultés sur le site Internet du projet « Yusynth » , et son ombre bienveillante plane sur la plupart des forums fréquentés par les fanatiques de l'analogique.

Yves USSON et quelques amis branchés

Combinant le savoir-faire renommé d'ARTURIA dans la conception d'instruments de musiques innovants, et la vaste connaissance et expérience d'Yves USSON, le synthétiseur analogique MiniBrute plonge ses racines dans les années 1970 tout en assimilant le meilleur du 21 ème siècle.

¹ D.I.Y. = Do It Yourself, soit en français « Faites-le vous-même »

² http://yusynth.net

Le synthétiseur analogique ARTURIA MiniBrute

Nous avons conçu MiniBrute avec quatre objectifs: un son analogique sans égal, une utilisation intuitive, un coût le plus bas possible, le tout sans aucun compromis

sur les composants, le design, ou la connectivité. Du plus petit AOP aux potentiomètres en passant par le boîtier, nous n'avons choisi que les meilleurs fournisseurs, soumis chaque composant à de rudes tests avant validation, et optimisé la conception pour une meilleure expérience de jeu possible.

De plus, nous avons décidé de réintroduire un peu de « ludicité » dans le processus de création sonore, ainsi que dans le contrôle sur scène ou en studio. Aucune présélection, point de menu déroulant ou caché, nulle obscure combinaison de touche ne viendront troubler votre créativité: toute la mise en forme du son est au bout de vos doigts. Cette orientation a permis l'utilisation de véritables oscillateurs analogiques, et non numériques, pour fournir cette richesse sonore unique qui est l'apanage de la synthèse analogique.

Jouer d'un instrument de musique ne devrait pas ressembler au travail avec un tableur. MiniBrute inspire la musique et la créativité, c'est l'expérience d'un instrument ludique, solide, inspirant et efficace. De plus, avec son clavier compact de 25 touches, MiniBrute est idéal pour le musicien nomade ou dont l'espace de travail est réduit. MiniBrute vous offrira des basses puissantes, des effets surprenants, des solos hurlants, et surtout des sons qu'aucun synthétiseur sur cette planète ne peut produire.

Comme chacun le sait, les synthétiseurs analogiques sont coûteux à produire. Mais quel est l'intérêt de fabriquer un synthétiseur pour « tout le monde », si personne ne

6 Notes legales

³ Amplificateur opérationnel : un <u>composant électronique</u> fort utile

peut se l'offrir ? Nous avons donc fait le pari que celui-ci serait un succès et de le produire en gros volumes, permettant les économies d'échelle sur les composants, et ainsi transposer les techniques de l'artisan à l'échelle de production industrielle. Le résultat est une synthèse analogique sans compromis.

MiniBrute est un véritable instrument de musique. Nous avons adoré le concevoir, le fabriquer, et finalement en jouer. Nous espérons que vous partagerez notre enthousiasme, et trouverez l'inspiration dans ses sonorités.

Mais cessons de tergiverser, il est grand temps de brancher votre nouvel ami analogique, et de commencer à faire vibrer les murs...

6 Notes legales

2 INSTALLATION

1.1 Précautions d'utilisation

Le MiniBrute utilise un adaptateur d'alimentation externe. Ne pas utiliser de type d'adaptateur ou d'alimentation autre que celui fourni par Arturia et spécifié dans ce manuel (voir le chapitre 4.3.1 pour plus de détails). ARTURIA n'accepte aucune responsabilité des dommages causés par l'utilisation d'une alimentation non autorisée.

MISE EN GARDE

Ne pas placer ce produit dans un endroit ou une position où quelqu'un pourrait marcher, trébucher ou s'emmêler sur les cordons de connexion ou d'alimentation. L'utilisation d'une rallonge n'est pas recommandée. Toutefois, si vous devez en utiliser une, assurez-vous que le cordon ait la capacité de supporter le courant maximum consommé par ce produit. Merci de consulter un électricien pour plus d'informations sur votre puissance électrique requise.

Ce produit doit être utilisé uniquement avec les composants fournis ou recommandés par ARTURIA. Lorsqu'il est utilisé avec d'autres composants, merci d'observer toutes les indications de sécurité et les instructions qui accompagnent ces produits accessoires.

SPECIFICATIONS SOUMISES A EVOLUTION

Les informations contenues dans ce manuel sont garanties exactes à la date d'impression de l'ouvrage. Toutefois, ARTURIA se réserve le droit de changer ou de modifier toute ou partie des spécifications sans notification ni obligation de mettre à jour les produits existants.

IMPORTANT

Toujours suivre les précautions élémentaires ci-dessous pour éviter les risques de blessures graves ou même la mort par choc électrique, dégâts, incendies et autres risques.

Le produit utilisé seul ou en combinaison avec un amplificateur, un casque ou des enceintes, peut être en mesure de produire des niveaux sonores pouvant causer une perte auditive permanente. NE PAS utiliser pendant de longues périodes de temps à un niveau élevé ou à un niveau qui soit inconfortable. Si vous éprouvez une perte auditive ou des bourdonnements dans les oreilles, vous devriez sérieusement consulter un médecin spécialiste. C'est également une bonne idée de faire contrôler vos oreilles et votre ouïe annuellement.

NOTIFICATION

La garantie du fabriquant ne couvre pas les frais de service encourus en raison d'un manque de connaissances concernant l'utilisation correcte d'une fonction ou d'une caractéristique (lorsque l'appareil fonctionne comme prévu) ne sont pas couverts par la garantie du fabricant, et sont donc la responsabilité du propriétaire. Merci de lire attentivement ce manuel et consultez votre revendeur avant de solliciter nos services.

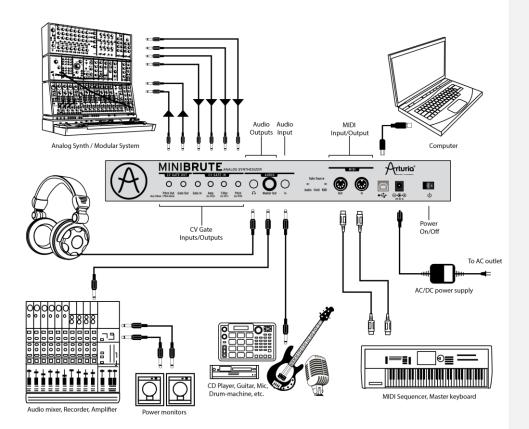
LES PRÉCAUTIONS SONT, ENTRE AUTRES, LES SUIVANTES :

- •Lire et comprendre toutes les instructions.
- •Toujours suivre les instructions sur l'instrument.
- •Avant de nettoyer l'instrument, toujours retirer la fiche électrique de la prise, ainsi que le câble USB. Lors du nettoyage, utilisez un chiffon doux et sec. Ne pas utiliser d'essence, alcool, acétone, essence de térébenthine ou d'autres solutions organiques, ne pas utiliser un nettoyant liquide, de spray ou un tissu trop humide.
- •Ne pas utiliser l'instrument à proximité d'eau ou d'humidité, comme une baignoire, un évier, une piscine ou autre lieu semblable.
- •Ne pas placer l'instrument dans une position instable où il risquerait de se renverser.
- •Ne pas poser d'objets lourds sur l'instrument. Ne pas bloquer les ouvertures ou les évents de l'instrument; ces emplacements sont utilisés pour la circulation d'air afin d'éviter toute surchauffe de l'instrument. Ne pas placer l'appareil près d'une évacuation de chaleur ou dans tout autre endroit avec peu de circulation d'air.
- •N'utiliser que l'adaptateur secteur spécifique recommandé. (voir le chapitre 3.3.1 pour plus de détails).
- •S'assurer que la tension électrique du réseau correspond à la tension d'entrée indiquée sur l'adaptateur secteur.
- •Ne pas ouvrir et insérer quoi que ce soit dans l'instrument, cela peut provoquer un incendie ou un choc électrique.
- •Ne renverser aucun type de liquide sur l'instrument.
- •En cas de dysfonctionnement, toujours apporter l'instrument à un centre de maintenance qualifié. Vous invaliderez votre garantie si vous ouvrez et retirez le couvercle, et toute intervention incorrecte peut provoquer un choc électrique ou d'autres dysfonctionnements.
- •Ne pas utiliser l'appareil lors de la présence d'un orage ou d'éclairs.
- •Ne pas exposer l'appareil au soleil.
- •Ne pas utiliser l'instrument à proximité d'une fuite de gaz.
- •ARTURIA n'est responsable d'aucun dommage ou perte de données causés par une utilisation impropre de l'instrument.
- •ARTURIA recommande l'utilisation de câbles blindés d'une longueur inférieure à 3 mètres pour l'Audio, et équipés de ferrites pour le CV/Gate.

1.2 Enregistrez votre instrument

L'enregistrement de votre instrument établit votre propriété légale, qui vous autorise à accéder au service Support Technique Arturia, et d'être informé des mises à jour. De plus, vous pouvez vous abonner à la newsletter ARTURIA pour être informé des nouveautés ainsi que des offres promotionnelles relatives à ARTURIA :

http://www.arturia.com/login


Allez à la section « My Registered Products » et ajoutez le synthétiseur MiniBrute en entrant son numéro de série, tel qu'il est imprimé sur l'étiquette située sous la machine :

1.3 Raccordement du MiniBrute à votre environnement

Toujours mettre hors tension tous les appareils audio avant d'effectuer quelconque connexion. Ne pas le faire peut endommager vos haut-parleurs, le synthétiseur MiniBrute, ou tout autre équipement audio.

Après avoir terminé toutes les connexions, réglez tous les niveaux à 0. Allumez les différents appareils, et l'amplificateur ou le système d'écoute en dernier, puis augmentez le volume à un niveau d'écoute confortable.

Voici un aperçu des connecteurs du synthétiseur MiniBrute :

- •Entrée et sorties Audio.......Prises jack mono 6,35 mm (1/4")
- •CV/Gate.....Prises jack mini 3,5 mm (1/8")
- •Entrée et sorties MIDI......Prises MIDI standard DIN-5
- •USB.....Prise USB Standard type B
- •Entrée alimentation DCInterne 2,1 mm, externe 5,5 mm

1.4 Mise en chauffe et ajustements généraux

De même que tous les autres vrais synthétiseurs analogiques, après avoir été mis sous tension, le MiniBrute a besoin d'une <u>période de chauffe</u> d'environ cinq à dix minutes. Cette période permet d'atteindre une température de fonctionnement stable, qui assure une hauteur de l'oscillateur précise. Le temps de préchauffage dépend de la température extérieure; un environnement froid exigera un temps de chauffe plus long, alors qu'un environnement plus chaud nécessitera un temps plus court.

Une fois que le synthétiseur a atteint sa température de fonctionnement, accordez le à la bonne hauteur. Utilisez un accordeur externe pour vérifier l'accordage de l'instrument, si nécessaire, ajustez le potentiomètre **Fine Tune** pour accorder le MiniBrute à la hauteur désirée.

Le MiniBrute a été conçu pour obtenir un accordage avec une stabilité à toute épreuve quand il fonctionne dans des conditions de température et d'humidité normales, à une température extérieure comprise entre 20°C et 32°C dans une zone tempérée. En pratique, le MiniBrute offre un fonctionnement satisfaisant dans une plage de températures beaucoup plus large, cependant des températures extérieures ou fluctuations extrêmes peuvent conduire à un temps de stabilisation plus long, ou un accord instable.

2 DEMARRAGE RAPIDE

Ce chapitre fournit les bases dont vous aurez besoin pour créer vos premiers sons avec le MiniBrute, afin que vous puissiez commencer à profiter de ses sons riches et complets immédiatement. Dans les chapitres suivants, nous étudierons en détail l'architecture du synthétiseur et les fonctions incluses, pour approfondir le processus de design sonore et vous permettre de créer des sons plus vivants et complexes.

2.1 Créez votre premier son : le « patch de base »

Une fois votre MiniBrute correctement connecté à votre système audio, réglez toutes les commandes à leur niveau minimum:

- •dans le sens inverse des aiguilles d'une montre pour les potentiomètres
- position la plus basse pour les curseurs
- •position centrale (à 12 heures) pour les contrôles avec et +, ainsi que pour le **Fine Tune**.

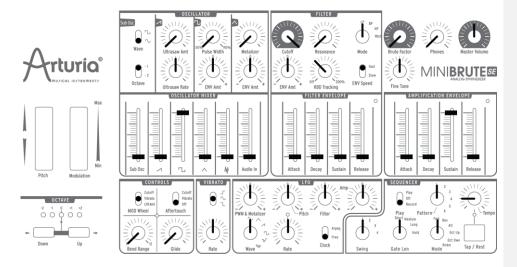
Réglez le commutateur du panneau arrière Gate Source [4.3.4] sur la position KBD.

Réglez le commutateur **Mode** de la section **FILTER** sur **LP**, et le commutateur **ENV Speed** sur **Fast.**

Réglez le commutateur **Aftertouch** de la section **CONTROL** sur **Off**, et **MOD Wheel** sur **Vibrato**.

Réglez le commutateur **Vibrato** sur la position \sim .

Réglez le commutateur Clock de la section LFO sur la position Free.


Réglez le commutateur Play/Off/ Record de la section SEQUENCEUR sur Off.

Allumez votre MiniBrute, et réglez le bouton Master Volume au centre.

Réglez le curseur de l'onde carrée de la section MIX au maximum.

Tournez le bouton **Cutoff** de la section **FILTER** au maximum dans le sens d'une aiguille d'une montre.

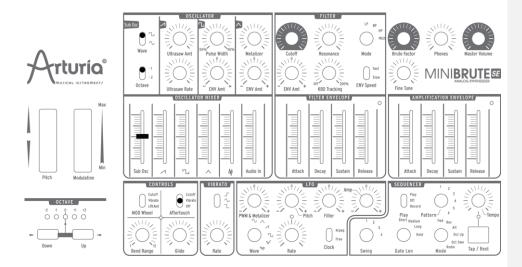
Voici un aperçu du patch:

Maintenant, appuyez sur une touche; vous devriez entendre votre tout premier son MiniBrute!

Bien... mais cela sonne un peu comme une calculatrice de poche, n'est-ce pas ? Nous allons améliorer cela dans le chapitre suivant, mais pour l'instant jouez sur le clavier tout en appuyant sur les bouton **UP** et **DOWN** de la section **OCTAVE**: les notes seront transposées en conséquence.

2.2 Ajouter un peu de vibrato

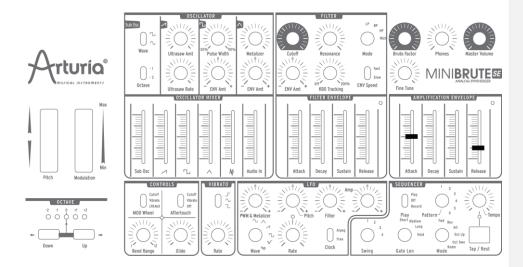
Appuyez et maintenez une touche sur le clavier, et augmentez doucement la molette **Modulation**, cela ajoutera un peu de vibrato à votre son.


Repositionnez la molette **Modulation** à sa position initiale.

Réglez le commutateur **Aftertouch** de la section **CONTROL** sur la position **Vibrato**.

Maintenant jouez sur le clavier et quand une touche est enfoncée, appuyez un peu plus fort sur cette touche. Cela déclenche une modulation de vibrato sur la note que vous tenez, vous pouvez donc ajouter de l'expression à votre jeu.

Réglez le commutateur **Sub Osc** sur la position ¹ et **Octave** sur la position -1. Montez le curseur **Sub Osc** dans la section **MIXER** au milieu, et pressez une touche. Cela renforce votre son en ajoutant plus de basse.


Voici un aperçu du patch:

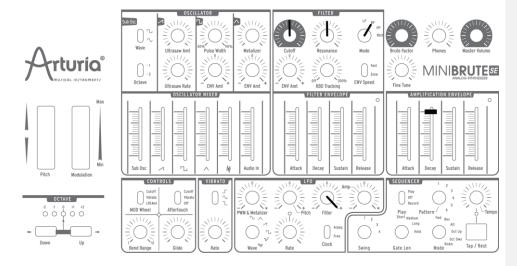
2.3 Peaufiner l'enveloppe

Maintenant nous allons façonner l'enveloppe d'amplification du son, qui détermine comment le niveau varie en fonction du temps lorsque vous jouez une note. Jusqu'à présent le niveau de **Sustain** était réglé au maximum, en résulte un son typé « orgue électronique », sans dynamique. En changeant les autres paramètres (**Attack**, **Decay**, **Release**) nous pouvons contrôler la façon dont le son va entrer, se maintenir, et disparaître.

Augmentez le curseur **Attack** de la section **AMPLIFICATION ENVELOPE** à sa position du milieu, puis pressez une touche. Maintenant le son monte doucement jusqu'au niveau de maintien. Dès que vous relâchez la touche, le son s'arrête brusquement. Augmentez le curseur **Release**, et le son disparaîtra petit à petit jusqu'à son niveau minimum lorsque vous relâchez une touche.

Maintenant, placez ces quatre curseurs d'enveloppe vers le bas, et augmentez le curseur **Decay** au maximum. Pressez et maintenez enfoncée une touche : le son apparaît dès que vous appuyez sur la touche, et disparaît lentement jusqu'au niveau minimum. Tout en appuyant sur une touche à plusieurs reprises, baissez lentement le curseur **Decay** : le son va disparaître plus rapidement. Dans l'intervalle la plus basse du curseur, vous entendrez des sons courts, percussifs.

Maintenant que nous avons traité les bases de l'enveloppe d'amplification, nous allons voir quelque chose d'encore plus amusant.


2.4 Rencontre avec le LFO

Encore une fois, dans la section **AMPLIFICATION ENVELOPE** augmentez le curseur **Decay** au maximum, et réglez les autres curseurs d'enveloppe au minimum.

Dans la section **FILTER**, réglez les potentiomètres **Cutoff** et **Resonance** sur la position du milieu, et réglez le sélecteur **Mode** sur **BP**.

Dans la section **LFO**, réglez le potentiomètre **Filter** au maximum.

Voici un aperçu du patch:

Pressez maintenant une touche : vous devriez entendre un balayage du imbre, un peu comme un didgeridoo, à un rythme indiqué par la LED rouge. Modifiez le potentiomètre **Rate** pour ralentir ou accélérer cet effet wah-wah, et jouez avec le filtre **Resonance** pour l'accentuer.

Soyez prudent, vous venez juste d'entrer dans le royaume du Dubstep...

2.5 Créer des séquences

Le séquenceur est une fonction amusante et musicale ajoutée au MiniBrute SE. Il vous permettra de programmer des patterns et des mélodies et de les lire à des vitesses différentes.

Commencez par mettre en place le BASIC PATCH.

2.5.1 Enregistrement d'un modèle de base

Réglez le bouton PLAY MODE sur enregistrer.

Maintenant commencer à jouer des notes sur le clavier. Lorsque vous commencez à jouer des notes, la séquence sélectionnée en mémoire est effacée.

Lorsque vous avez terminé, déplacez le bouton PLAY MODE sur OFF.

Pour jouer une séquence, il suffit de déplacer le bouton PLAY MODE sur PLAY et appuyez sur une touche.

Maintenant, votre séquence est en cours de lecture.

Vous pouvez transposer la séquence dans n'importe quelle tonalité en jouant la note de départ de la séquence sur le clavier.

Accélérez et ralentissez la séquence en tournant le bouton RATE ou en appuyant sur le bouton TAP TEMPO 3 fois .

2.5.2 Insertion des silences

Tous les pas de votre séquence sont liées de la même façon.

Figure 16

Pour créer des motifs plus musicaux il est intéressant d'utiliser des motifs syncopés. La fonction TAP / REST permet d'insérer des silences pour enrichir vos séquences. Dans la figure 17, vous pouvez voir le résultat d'une séquence avec des TAP REST entre les notes jouées.

Figure 17

Il y a un certain nombre de paramètres qui sont accessibles par l'intermédiaire du logiciel de configuration. Ces fonctions sont décrites en détail dans le manuel de connexion MiniBrute annexe.

Dans ce chapitre , nous vous avons présentés quelques-unes des possibilités sonores du MiniBrute . Mais il y en a beaucoup plus , dans les chapitres suivants nous vous présenterons:

Les différentes sections en détails qui composent cet instrument fantastique Des conseils sur la façon d'utiliser ces éléments pour construire vos propres sons Votre voyage avec le MiniBrute vient tout juste de de commencer... Commented [1]: <!--[if gte vml 1]><v:shape id="Picture_x0020_24" o:spid="_x0000_i1026" type="#_x0000_t75" alt="MicBrut_sequencernotes1.png"

style='width:492pt;height:85pt;visibility:visible'> <v:imagedata

src="file://localhost/Users/gdarcey/Library/Caches/ TemporaryItems/msoclip/Oclip_image003.png" o:title="MicBrut_sequencer-notes1"/> <v:textbox style='mso-rotate-with-shape:t'/> </v:shape><![endif]-->

Commented [2]: <!--[if supportFields]> SEQ Figure * ARABIC <![endif]-->

Commented [3]: <!--[if supportFields]><![endif]-->

Commented [4]: <!--[if gte vml 1]><v:shape id="Picture_x0020_25" o:spid="_x0000_i1027" type="#_x0000_t75" alt="MicBrut_sequencer-notes2.png"

style='width:478pt;height:92pt;visibility:visible'> <v:imagedata

src="file://localhost/Users/gdarcey/Library/Caches/ TemporaryItems/msoclip/0clip_image005.png" o:title="MicBrut_sequencer-notes2"/> <v:textbox style="mso-rotate-with-shape:t'/> </v:shape><![endifl-->

Commented [5]: <!--[if supportFields]> SEQ Figure * ARABIC <![endif]-->

Commented [6]: <!--[if supportFields]><![endif]-->

3 DESCRIPTION GENERALE

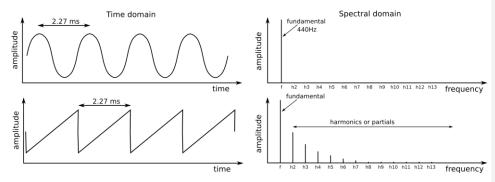
Votre MiniBrute est un véritable synthétiseur analogique, c'est à dire que tous les sons sont produits par des circuits électroniques analogiques. Aucune numérisation n'intervient dans la génération, le filtrage ou le contrôle basique du son. C'est une des raisons pour lesquelles MiniBrute crée des sons électroniques riches, animés, « vivants ».

3.1 Architecture d'un synthétiseur analogique

3.1.1 Générateurs de signaux

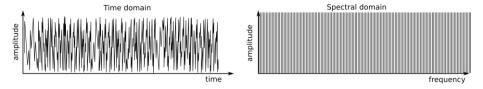
Les générateurs de signaux sont des circuits qui produisent les formes d'ondes de base pour la création d'un son. Il en existe deux catégories : les générateurs de signaux harmoniques et les générateurs de signaux non-harmoniques.

3.1.1.1 Générateur de signaux harmoniques (oscillateurs)


L'oscillateur produit un signal électrique caractérisé par un motif répété et de forme constante, appelé forme d'onde. Le nombre de fois que ce motif est répété chaque seconde constitue la fréquence du signal, ou encore sa hauteur musicale (pitch). Par exemple, un motif qui se répète toute les 2,27ms correspond à une fréquence fondamentale de 440 cycles par seconde, ou 440 Hertz (unité de mesure des cycles par seconde, du nom de Heinrich Heinz qui le premier démontra l'existence des ondes magnétiques, abrégée en Hz). Cette fréquence est associée à la hauteur du La central sur le clavier d'un piano. En général, les oscillateurs produisent certaines voire toutes ces formes d'ondes de base: la sinusoïde (sine), le triangle (triangle), la dent-de-scie (sawtooth), le carré (square) et la pulsation (pulse).

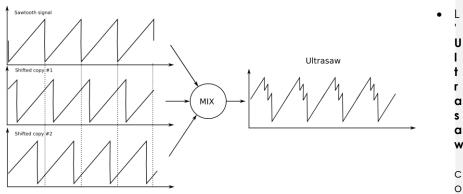
es d'ondes ont la même fréquence, alors leur hauteur est équivalente. Néanmoins, des formes d'ondes différentes possèdent des timbres différents. Par exemple, la sinusoïde a une sonorité très pure et assez sombre, tandis que celle de la dent-descie sera beaucoup riche et claire. En comparaison, le carré sonne un peucomme une clarinette, et la pulsation comme un hautbois.

Toutes les formes d'ondes complexes sont en fait fabriquées à partir d'une multitude de sinusoïdes: une onde sinus fondamentale détermine la fréquence de base, et des ondes sinus multiples de cette fréquence (ou harmoniques) qui, lorsque additionnées toutes ensembles, produisent un timbre unique. Ces harmoniques sont des multiples entiers de la fréquence fondamentale, c'est à dire

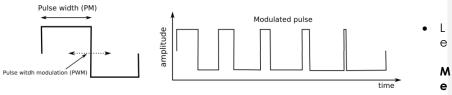

que la seconde harmonique est le double de la fréquence fondamentale, la troisième harmonique en est le triple, et ainsi de suite.

Des périphériques permettent de contrôler l'oscillateur pour en définir la hauteur du signal (le clavier), ou moduler cette hauteur (le vibrato), ou encore modifier la structure des formes d'ondes (la PWM ou l'Ultrasaw).

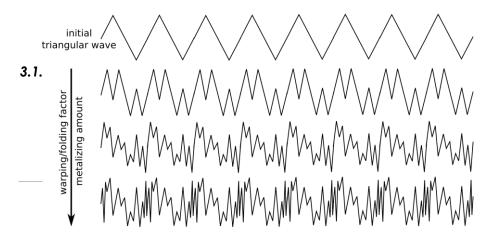
3.1.1.2 Générateur de signaux non-harmoniques


A la différence du générateur précédent, le générateur de signal nonharmonique (ou générateur de bruit) ne produit aucun motif régulier ou périodique: l'amplitude su signal varie aléatoirement. Par conséquent, le signal produit ne comporte aucune fréquence fondamentale (donc aucune hauteur), et son spectre harmonique consiste en un nombre quasi-infini de fréquences n'aillant aucune relation harmonique entre elles.

De tels signaux ont une sonorité très différente des signaux harmoniques précédents, et ressemblent plus au son du vent, d'un échappement de vapeur, de la pluie ou d'une chute d'eau, etc.


3.1.2 Enrichisseurs de signaux

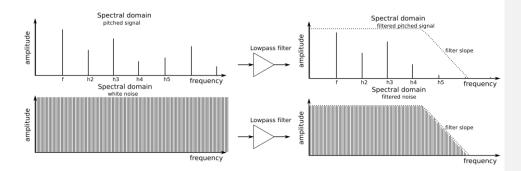
Les enrichisseurs de signaux (waveshapers) transforment ou distordent une forme d'onde de base de l'oscillateur pour en augmenter le contenu harmonique, et le rendre plus brillant et plus riche. Le synthétiseur MiniBrute fournit trois enrichisseurs de signaux, chacun dédié à une forme d'onde particulière:



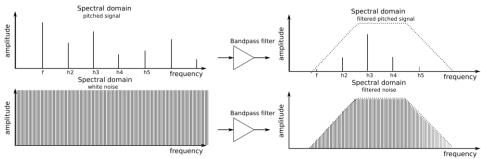
nstruit deux copies déphasées du signal de dent-de-scie. Ces copies ont des décalages de phase indépendants et en perpétuel mouvement, et peuvent être mélangées à la dent-de-scie originale. Il en résulte un effet d'ensemble riche et vivant, dont le caractère dépend des taux de modulation des copies déphasées.

 La modulation de largeur d'impulsion, ou PWM (Pulse Width Modulation), se base sur l'onde carrée et en change le rapport cyclique, c'est à dire le rapport entre le temps passé au niveau maximum et au niveau minimum. Un carré correspond à un rapport cyclique de 50%. La largeur d'impulsion peut être modifiée de 50% à 90%, permettant ainsi de recréer une large palette d'instruments à vent.

talizer prend la forme d'onde triangulaire, la plie et la replie pour créer des formes d'ondes à la dentition très complexe, riches en harmoniques élevées. On obtient dès lors des sonorités proches du clavecin ou du clavinet. Une modulation dynamique de ce paramètre (via le LFO ou l'enveloppe) ouvre un univers de sons métalliques résonants, peuplé de ressorts improbables et de tubes qui s'entrechoquent...

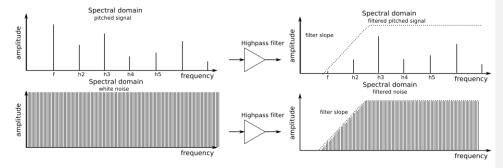

3.1.3.1 Qu'est ce qu'un filtre?

De manière générale, un filtre est placé après l'étage de génération des signaux (oscillateur + enrichisseurs), et modifie le contenu spectral du ou des signaux généré(s). Cela peut impliquer à la fois l'atténuation (filtrage) et l'amplification (résonance) de certaines harmoniques, et ces modifications peuvent être statiques ou dynamiques. Les filtres sont des circuits très importants qui contribuent grandement au caractère sonore d'un synthétiseur.

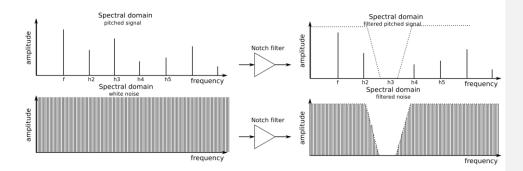

3.1.3.2 Types de filtres: Low-pass, Band-pass, High-pass & Notch

Un filtre peut opérer selon divers modes. Ces modes sont appelés **fonctions de transfert** ou **réponses spectrales**. Le filtre du synthétiseur MiniBrute peut opérer en mode passe-bas (low-pass), passe-bande (band-pass), passe-haut (high-pass) ou réjecteur-bande (notch).

En mode passe-bas (low-pass), le contenu harmonique situé en dessous d'une fréquence dite de coupure (cutoff frequency, abrégé en cutoff) reste inchangé, tandis que toutes les harmoniques au-dessus de cette fréquence sont atténuées. Cette atténuation est fonction de la fréquence: plus l'harmonique est élevée, plus l'atténuation est forte. En d'autres mots, ce mode est appelé passe-bas car il laisse passer les basses fréquences en-dessous de la coupure et réduit les hautes fréquences au-dessus de la coupure. Cette corrélation entre atténuation et fréquence détermine la pente du filtre, laquelle est mesurée en -dB/octave (c'est à dire la quantité d'atténuation appliquée à une harmonique de fréquence double de la fréquence de coupure).

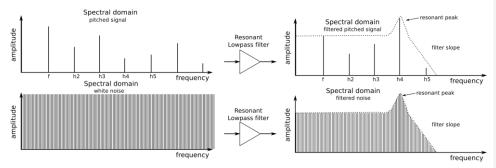


En mode passe-bande (band-pass), la fréquence de coupure devient la fréquence centrale de bande. Les harmoniques situées à l'intérieur de cette bande restent inchangées, tandis que celles situées de part et d'autre de la

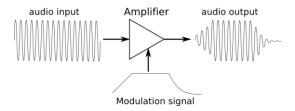


bande sont atténuées fortement.

En mode passe-haut (high-pass), les harmoniques au-dessus de la fréquence de coupure restent inchangées, tandis que celles situées en-dessous de cette fréquence sont atténuées.


En mode réjecteur-bande (notch), la fréquence de coupure devient la fréquence centrale de bande ; mais à l'inverse du passe-bande, les harmoniques à l'intérieur de la bande sont atténuées, tandis que celles situées de part et d'autre de cette bande restent inchangées.

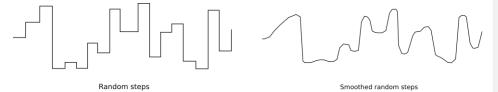
La fréquence de coupure n'a pas à rester statique, la contrôler depuis d'autres périphériques comme le clavier (keyboard tracking), le LFO, le générateur d'enveloppe, ou d'autres contrôleurs, permet de créer d'intéressants timbres changeants, dynamiques.


3.1.3.3 Résonance

La résonance est la capacité du filtre à amplifier, à accentuer les harmoniques proches de la fréquence de coupure, créant ainsi une bosse, voire un pic, dans la réponse spectrale. Ce paramètre peut être poussé jusqu'au point où, entrant en auto-oscillation, le filtre ne se comporte plus vraiment comme tel mais plutôt comme un oscillateur: il produit une sinusoïde à la fréquence de coupure.

3.1.4 Amplificateur

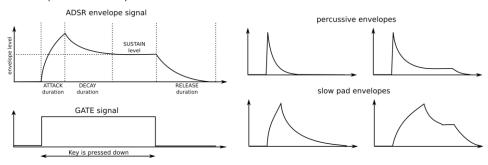
L'amplificateur suit généralement le filtre dans la chaîne de synthèse, il détermine l'amplitude générale du signal. Son gain est contrôlable par diverses sources de modulation comme un LFO ou un générateur d'enveloppe, ou toute source externe (comme une pédale d'expression). L'amplificateur sert principalement à sculpter la dynamique d'un son.


3.1.5 Modulateurs

Les modulateurs fournissent des signaux qui sont conçus précisément pour contrôler le comportement des oscillateurs, des filtres et des amplificateurs. A la différence des oscillateurs audio, les signaux de modulation sont généralement de basse-fréquence.

Par exemple, quand vous chantez avec un effet de rato, vous appliquez à votre voix avec une modulation de sa hauteur. Autre exemple, sur un amplificateur de guitare, le circuit de molo est une modulation du volume de l'instrument.

Les modulateurs sont utiles pour créer des changements de hauteur, des balayages de timbre ou des variations de volume. Les principaux modulateurs sont le LFO (Low Frequency Oscillator, oscillateur basse-fréquence) et les générateurs d'enveloppe, mais ils peuvent être également fournis par des sources externes générant un signal de type CV (Control Voltage, tension de contrôle) pour la modulation, et de type Gate (interrupteur) pour déclencher/stopper les modulateurs ou les notes.


Un LFO est un oscillateur qui peut produire des formes d'ondes à des fréquences basses, voire très basses (de 0,05Hz à 100Hz). Généralement les formes d'ondes produites sont la sinusoïde, la dent-de-scie, le carré, un signal échantillonné-bloqué et un signal aléatoire lissé. L'amplitude et la polarité (c'est à dire l'effet positif ou négatif) de ces ondes peuvent être ajustées avant leur envoi vers les éléments à moduler.

Contrairement à un LFO, un générateur d'enveloppe (ou générateur d'ADSR, pour Attack-Decay-Sustain-Release) ne fournit pas de motif répétitif, mais est déclenché par le clavier ou par un signal externe sur l'entrée Gate. Un appui sur une note du clavier ou un signal de gate déclenchent un signal évoluant en 4 étapes différentes :

 La phase d'attaque (attack) commence à l'appui sur une touche ou l'apparition d'un signal de gate, et détermine le temps pris par l'enveloppe pour aller du niveau zéro au niveau maximal. Ce temps est compris entre 1 milliseconde et 10 secondes.

- La phase de décroissance (**decay**) détermine le temps pris pour aller du niveau maximal au niveau de maintien (voir le point suivant). Ce temps est compris entre 1 milliseconde et 10 secondes.
- La phase de maintien (sustain) commence dès la fin du temps de décroissance, et conserve un niveau constant de l'enveloppe tant que la touche du clavier reste enfoncée ou qu'un signal de gate reste appliqué. Le niveau de maintien s'ajuste de zéro jusqu'à la valeur maximale de l'enveloppe.
- Enfin, la phase de relâchement (**release**) commence dès que la note cesse d'être jouée ou la disparition du signal de *gate*, et détermine le temps pour que le niveau passe du maintien à zéro.

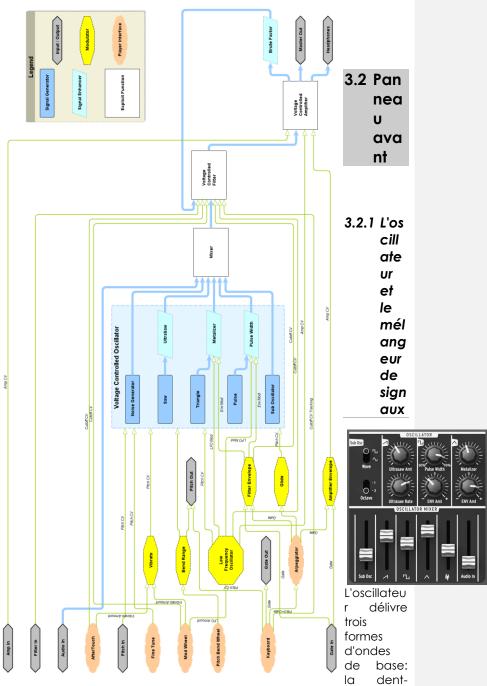
3.1.6 Interface de jeu

Pour jouer de votre synthétiseur, vous avez besoin d'une interface de jeu. Le synthétiseur MiniBrute fournit un clavier de type piano de 2 octaves. Au-delà d'offrir un moyen de jouer des notes, ce clavier fournit des contrôles additionnels pour ajouter quelque expressivité:

- L'Aftertouch génère un signal correspondant à la pression appliquée sur une touche après avoir été enfoncée. Vous pouvez utiliser ce signal pour moduler le vibrato, la fréquence de coupure du filtre, ou d'autres paramètres.
- La vélocité (**Velocity**) correspond à la dynamique de votre jeu, et pareillement à l'aftertouch, peut être appliquée comme source de modulation à de multiples paramètres.
- La Transposition permet de décaler par octave l'étendue des notes du clavier, couvrant ainsi un total de 6 octaves.
- La molette de Pitch Bend permet de modifier en temps-réel la hauteur des notes, tout comme un guitariste appliquerait des bends sur les cordes de sa guitare.

- La molette de **Modulation** permet de doser en temps-réel la modulation vers différents paramètres. Par exemple, en l'actionnant vous pouvez ajouter du vibrato ou modifier la fréquence de coupure du filtre.
- Un séquenceur automatise des séquences répétitives de notes.

D'autres façons de contrôler le synthétiseur sont possibles grâce au protocole MIDI et aux signaux externes CV/Gate.


3.1.7 Entrées et sorties

Pour entendre les sons produits par le synthétiseur MiniBrute, sa sortie audio doit être connectée à un amplificateur audio, soit directement soit via une console de mixage; vous pouvez également brancher un casque sur la sortie prévue à cet effet.

En ce qui concerne le contrôle, le synthétiseur MiniBrute accepte les signaux de contrôle en tension en provenance de matériels comme un séquenceur pas-à-pas analogique ou un synthétiseur modulaire analogique. Un contrôleur MIDI (pad de batterie électronique, contrôleur à vent) ou un séquenceur MIDI peuvent également piloter le synthétiseur, tout comme un signal audio provenant d'un microphone ou d'une guitare électrique.

Les moyens de contrôler (ou d'être contrôlé par) d'autres instruments sont fournis par les entrées et sorties **MIDI In** et **Out**, l'entrée audio externe (**External Audio Input**), les entrées et sorties **CV GATE IN** et **CV GATE OUT**, situées sur la face arrière du synthétiseur.

3.1.8 Diagramme de fonctionnement

de-scie, la pulsation et le triangle. Ces formes d'ondes sont accessibles dans le mélangeur de signaux, leurs niveaux respectifs étant réglés grâce aux potentiomètres rectilignes (sliders). Les formes d'ondes peuvent être modifiées grâce à leur enrichisseurs respectifs: Ultrasaw, PWM et Metalizer.

3.2.1.1 Les formes d'ondes

Dent-de-scie et Ultrasaw

Le volume des signaux Dent-de-scie (sawtooth) et Ultrasaw est réglé par le potentiomètre rectiligne à l'icône en dent-de-scie. La position basse coupe le signal, en poussant vers le haut on augmente le volume du signal.

Lorsque le potentiomètre **Ultrasaw Amount** est totalement à gauche, seul le signal original dent-de-scie est audible. En tournant ce

potentiomètre vers la droite on augmente progressivement le niveau d'effet Ultrasaw injecté dans le signal d'origine. L'Ultrasaw consiste en deux copies du signal dent-de-scie qui sont indépendamment déphasées selon leur modulation propre. Le déphasage d'une des copies est modulée à une fréquence fixe (1Hz), tandis que la fréquence de déphasage de la seconde copie est réglable grâce au potentiomètre **Ultrasaw Rate**: 0,1Hz au minimum pour un effet de battement lent, 1Hz (graduation 13) pour un effet semblable à un chorus, 3Hz (graduation 15) pour un effet « supersaw » typique de la house-music, et jusqu'à 10Hz au maximum pour des sons sismiques.

Carré et pulsation modulée

Le volume des signaux Carré et Pulsation Modulée est réglé par le potentiomètre rectiligne à l'icône carrée. La position basse coupe le signal, en poussant vers le haut on augmente le volume du signal. Lorsque le potentiomètre de niveau d'enlevoppe ENV Amt est centré (au marquage 0) et que le potentiomètre Pulse Width est au minimum (au marquage 50%), on entend une onde carrée. En tournant le potentiomètre Pulse Width dans le sens horaire, on

change le rapport cyclique du signal, transformant progressivement le carré en une pulsation jusqu'à un rapport cyclique de 90%, obtenant ainsi un son plus « acide » (proche d'un hautbois).

La largeur d'impulsion (ou rapport cyclique) est également contrôlable par deux modulateurs : l'enveloppe de filtre (Filter envelope) [3.2.2.7] dont la polarité et la quantité sont réglés par le potentiomètre ENV Amt, et le LFO [3.2.6]dont la polarité et la quantité sont réglés par le potentiomètre PWM & Metalizer situé dans la section LFO [3.2.6.4].

<u>Triangle et Metalizer</u>

Le volume des signaux Triangle et Metalizer est réglé par le potentiomètre rectiligne à l'icône triangulaire. La position basse coupe le signal, en poussant vers le haut on augmente le volume du signal.

En tournant le potentiomètre **Metalizer** dans le sens horaire depuis sa position minimale, on transforme la douce sonorité du triangle en

ondes plus complexes et métalliques.

Cette transformation est également contrôlable via deux modulateurs : l'enveloppe de filtre (**Filter Envelope**) dont la polarité et la quantité sont réglés par le potentiomètre **ENV Amt**, et le **LFO** [4.2.6]dont la polarité et la quantité sont

réglés par le potentiomètre PWM & Metalizer situé dans la section LFO [4.2.6.4].

Sous-oscillateur (Sub Osc)

Le volume du sous-oscillateur est réglé par le potentiomètre rectiligne **Sub Osc**. La position basse coupe le signal, en poussant vers le haut on augmente le volume du signal.

La section **Sub Osc** contient deux sélecteur. **Wave** permet de choisir quelle forme d'onde est générée, soit un signal carré (pour un son de basse agressive), soit un signal sinusoïdal (pour un son de basse

douce). Octave permet de sélectionner la hauteur du signal : soit une octave en dessous de la fréquence de l'oscillateur (-1), soit deux octaves en dessous (-2).

<u>Bruit</u>

Ce potentiomètre rectiligne ajuste le volume de bruit blanc envoyé au filtre. La position basse coupe le signal, en poussant vers le haut on augmente le volume du signal.

Mélanger une dose de bruit avec les autres signaux permet d'injecter un peu de souffle naturel au son final. Par exemple, une petite quantité de bruit ajoutée à un Triangle permet d'obtenir un son de flute assez réaliste.

Le bruit est également utile par lui-même pour créer des effets spéciaux ou des sons naturels tels que le vent, la pluie, les vagues, tout autant que des sons percussifs comme des cymbales.

Audio In

Ce potentiomètre rectiligne ajuste le volume de signal audio externe qui peut être raccordé à la chaîne de signal via le connecteur Audio In [4.3.3] prévu à cet effet. La position basse coupe le signal, en poussant vers le haut on augmente le volume du signal. Cette fonction permet de traiter un signal

audio externe, par exemple une guitare ou un microphone, à travers le filtre et l'amplificateur.

3.2.2 Le filtre

Le filtre modifie le timbre des signaux générés par l'oscillateur selon les quatre modes précédemment (LP, BP, HP & Notch) [4.1.3.2]. Sa fréquence de coupure et sa résonance peuvent être réglés manuellement. La fréquence de coupure peut également être contrôlée par le clavier et par plusieurs modulateurs.

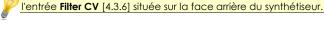
6 Notes legales

Le filtre du synthétiseur MiniBrute est basé sur une architecture Sallen & Key modifiée par Nyle Steiner en 1974, et offre une pente de -12 db/octave dans les modes LP et HP, et -6 db/octave dans les modes BP et Notch.

3.2.2.1 Mode

Le sélecteur rotatif **Mode** permet de choisir un mode parmi les quatre qu'offre le filtre : **LP** (low-pass, passe-bas), **BP** (band-pass, passe-bande), **HP** (high-pass, passe-haut), et **Notch** (réjecteur-bande).

Le mode passe-bas (LP) est le plus communément employé, et permet d'obtenir des sons pleins, gras et ronds. Les modes passe-bande (BP) et passe-haut (HP) offrent des sons plus fins et mais aussi parfois plus rudes. Lorsque modulé après le LFO, le mode réjecteur-bande (Notch) permet d'obtenir un effet proche d'un phaser pour guitare.


3.2.2.2 Fréquence de coupure

Le potentiomètre **Cutoff** règle la fréquence de coupure du filtre, de moins de 20Hz en position minimale jusqu'à 18kHz en position maximale.

Par exemple, en mode **LP** vous pouvez modifier la brillance du son. Pour mieux comprendre cette fonctionnalité, réglez toutes les formes d'ondes

du mélangeur à 0 (position minimale), puis montez le volume du bruit à mi-course. Réglez tous les sliders d'enveloppes à 0, puis montez le **Sustain** de l'enveloppe d'amplification [4.2.3.1] au maximum. Réglez le mode du filtre sur **LP**, réglez le potentiomètre rotatif **ENV Amt** [4.2.2.4] en position centrale, et **KBD Tracking** [4.2.2.5] sur **Off**. Appuyez sur une touche du clavier et maintenez-là enfoncée; tournez lentement le potentiomètre **Cutoff** et écoutez le changement dans le son.

La fréquence de coupure du filtre peut être contrôlée par le clavier [4.2.2.5] ainsi que par

3.2.2.3 Résonance

Le potentiomètre rotatif **Resonance** permet de créer un pic de résonance à la fréquence de coupure. En le tournant dans le sens horaire, on amplifie les harmoniques autour de la fréquence de coupure, le son devient plus agressif. Dans le dernier quart de sa course,

le filtre entre en auto-oscillation. Néanmoins ce comportement oscillant dépend de la fréquence de coupure ; le filtre du synthétiseur MiniBrute peut osciller dès environ 350 Hz jusqu'aux alentours de 8 kHz. Pour étendre la gamme d'oscillation, veuillez utiliser le potentiomètre rotatif **Brute Factor** [4.2.8.4].

3.2.2.4 Amplitude d'enveloppe

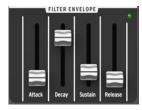
Le potentiomètre rotatif **ENV Amt** permet de contrôler l'amplitude et la polarité du signal d'enveloppe appliqué à la fréquence de coupure du filtre.

En position centrale (0), aucune modulation par l'enveloppe n'est appliquée à la fréquence de coupure du filtre. Dans la plage négative (endessous de 0), une quantité négative d'enveloppe est appliquée ; dans la plage positive (au-dessus de 0), une quantité positive d'enveloppe est appliquée à la fréquence de coupure du filtre.

3.2.2.5 Suivi clavier

La fréquence de coupure du filtre peut également être contrôlée par le clavier. Le potentiomètre **KBD Tracking** permet d'ajuster la façon dont cette fréquence suit le clavier. Répétez l'exercice décrit ci-dessus dans la partie **Cutoff** [4.2.2.2], réglez le potentiomètre rotatif **KBD**

Tracking au maximum dans le sens horaire, et jouez une serie de notes sur le clavier. Le filtre s'ouvre plus ou moins, les notes sont plus « brillantes » vers le haut du clavier et plus « sombres » vers le bas de celui-ci.


3.2.2.6 Vitesse d'enveloppe

Ce sélecteur permet de basculer la vitesse des deux enveloppes de filtre et d'amplification. En mode rapide (**Fast**), les courbes d'ADSR peuvent être très rapides, ce qui est très utile pour créer des sons claquants voire percussifs. En mode lent (**Slow**), les courbes d'ADSR peuvent être très

lentes, parfaites pour des sons très progressifs comme les pads.

3.2.2.7 Enveloppe de filtre

En mode usuel, l'enveloppe de filtre est déclenchée par le signal de gate issu du clavier. Elle peut également être déclenchée par d'autres signaux de gate tels que l'horloge du séquenceur [4.2.7] ou l'entrée externe dédiée [4.3.6]. A noter que selon la position du sélecteur GATE [4.3.4] situé sur la face arrière du synthétiseur, l'enveloppe de filtre est sous le contrôle du signal de gate issu soit du clavier, soit d'un signal audio externe Audio input [4.3.3],

ou de la position Hold.

Le slider **Attack** règle la durée de la première phase d'enveloppe. En fonction de la position du sélecteur **ENV Speed** [4.2.2.6], le temps d'attaque varie soit de 1 ms à 1s (**Fast**), soit de 10 ms à 10s (**Slow**).

Le slider **Decay** règle la durée de la seconde phase de l'enveloppe. En fonction de la position du sélecteur **ENV Speed** [4.2.2.6], le temps de décroissance varie soit de 1 ms à 1s (**Fast**), soit de 10 ms à 10s (**Slow**).

Le slider **Sustain** règle le niveau de la phase de maintien.

Le slider **Release** règle la durée de la dernière phase de l'enveloppe. En fonction de la position du sélecteur **ENV Speed** [4.2.2.6], le temps de relâchement varie soit de 1 ms à 1 s (**Fast**), soit de 10 ms à 10 s (**Slow**).

Une LED indique la quantité d'enveloppe appliquée au filtre. Sa luminosité dépend à la fois de l'amplitude du signal d'enveloppe et de la vélocité envoyée par le clavier (lorsque celle-ci été activée via la liaison USB et le logiciel de configuration **MiniBrute Connection** [4.4]).

3.2.3 L'amplification

L'amplificateur contrôle la dynamique de l'amplitude du son, déterminée par les paramètres d'enveloppe et du LFO.

3.2.3.1 Enveloppe d'amplification

En mode usuel, l'enveloppe d'amplification est déclenchée par le signal de gate du clavier. Elle peut également être déclenchée par d'autres signaux de gate tels que l'horloge du **séquenceur** [4.2.7] ou l'entrée externe dédiée [4.3.6].

A noter que selon la position du sélecteur **GATE** [4.3.4] situé sur la face arrière du synthétiseur, l'enveloppe d'amplification est sous le contrôle du signal de *gate* issu soit

du clavier, soit d'un signal audio externe **Audio input** [4.3.3], ou de la position **Hold**.

Le slider Attack règle la durée de la première phase d'enveloppe. En fonction de la position du sélecteur ENV Speed [4.2.2.6], le temps d'attaque varie soit de 1 ms à 1s (Fast), soit de 10 ms à 10s (Slow).

Le slider **Decay** règle la durée de la seconde phase de l'enveloppe. En fonction de la position du sélecteur **ENV Speed** [4.2.2.6], le temps de décroissance varie soit de 1 ms à 1 s (**Fast**), soit de 10 ms à 10 s (**Slow**).

Le slider **Sustain** règle le niveau de la phase de maintien.

Le slider **Release** règle la durée de la dernière phase de l'enveloppe. En fonction de la position du sélecteur **ENV Speed** [4.2.2.6], le temps de relâchement varie soit de 1 ms à 1 s (**Fast**), soit de 10 ms à 10 s (**Slow**).

Une LED indique la quantité d'enveloppe appliquée à l'amplificateur. Sa luminosité dépend de l'amplitude du signal d'enveloppe.

3.2.4 Les contrôles

3.2.4.1 Molette de modulation

Le sélecteur MOD Wheel définit l'assignation de la molette de Modulation [4.2.7.2]. Selon la position du sélecteur, la molette de modulation contrôlera soit la fréquence de coupure du filtre (Cutoff), soit la quantité de vibrato appliquée à l'oscillateur (Vibrato), soit la quantité de LFO (LFO Amt) envoyée à ses différentes destinations (en

l'occurrence : PWM & Metalizer, Pitch, Filter et Amp).

Sur cette dernière position (**LFO Amt**), tous les signaux de modulation du LFO étant contrôlés avec la molette de modulation, si celle-ci est au minimum les cibles ne reçoivent aucun signal de LFO.

3.2.4.2 Aftertouch

Le sélecteur d'**Aftertouch** définit l'assignation du signal d'aftertouch, très utile pour déclencher des modulations tout en jouant sur les touches et sans utiliser de potentiomètre ou de slider, permettant ainsi une plus grande expressivité. Ce sélecteur possède trois positions: l'aftertouch peut ainsi être routé vers la fréquence de coupure du filtre (**Cutoff**), être

utilisé pour déclencher le Vibrato [4.2.4], ou être désactivé (Off).

3.2.4.3 Étendue du pitch-bend

Le potentiomètre Bend Range contrôle l'amplitude de la molette de Pitch [4.2.7.2].

Lorsque ce potentiomètre est au minimum, la molette de pitch fait varier la hauteur de note de -1/2 ton (en position minimale) à +1/2 ton (en position maximale).

Lorsque ce potentiomètre est au maximum, la molette de pitch fait varier la hauteur de note de -1 octave (en position minimale) à +1 octave (en position maximale).

3.2.4.4 Glissement

Le potentiomètre Glide règle la quantité de portamento, c'est à dire la durée de transition d'une note à une autre, lorsque celles-ci sont jouées au clavier ou via le séquenceur.

Lorsque ce potentiomètre est au minimum, il n'y a pas de glissement, la transition entre chaque note est instantanée.

En tournant ce potentiomètre dans le sens horaire, on augmente l'effet de portamento; en position maximale, il faut environ 4s pour passer du Do le plus grave du clavier au Do le plus aigu (2 octaves au-dessus).

3.2.5 Vibrato

VIBRATO 📕 Le vibrato est un oscillateur basse-fréquence dédié à la modulation de pitch de l'oscillateur. Il est totalement indépendant des autres sources de modulation, et son amplitude et son déclenchement sont contrôlables respectivement par la molette de Modulation [4.2.4.1] et le sélecteur d'Aftertouch [4.2.4.2]. Il fournit plusieurs formes d'ondes de modulation disponibles grâce à un sélecteur trois-positions:

- un carré positif, utile pour créer un effet de trill-up:le pitch saute alternativement entre la note jouée au clavier et une note de
- hauteur supérieure dont l'intervalle est défini par la molette de **Modulation**;
- un sinus pour l'effet de vibrato classique;
- un carré négatif pour un effet trill-down: le pitch saute alternativement entre la note jouée au clavier et une note de hauteur inférieure dont l'intervalle est défini par la molette de Modulation.

Le potentiomètre Rate contrôle la fréquence de modulation du vibrato de 3 Hz à plus de 30 Hz.

3.2.6 LFO

Le LFO est un oscillateur basse-fréquence. C'est la principale source de modulation vers les différentes sections du synthétiseur MiniBrute.

6 Notes legales

3.2.6.1 Forme d'onde

Le LFO offre plusieurs formes d'ondes de modulations, accessibles grâce au sélecteur rotatif **Wave**: sinus, triangle, dent-de-scie, carré, aléatoire par paliers (Sample & Hold), et aléatoire lissé.

3.2.6.2 Fréquence

Le potentiomètre rotatif **Rate** permet d'ajuster la fréquence du LFO, de très basse (0,1 Hz, soit une pulsation toutes les 10 secondes) à très rapide (100 Hz, soit 100 pulsations par seconde). La LED rouge clignote en accord avec la pulsation.

3.2.6.3 Horloge

Le sélecteur **Clock** règle la source d'horloge du LFO. Celui-ci peut être synchronisé au tempo du séquenceur (en position **Seq**) ou en à sa propre horloge (en position **Free**).

3.2.6.4 Routage de modulation

PWM & Metalizer

Le potentiomètre rotatif **PWM & Metalizer** contrôle l'amplitude et la polarité du signal de LFO envoyé à la fois la largeur d'impulsion du signal carré (initialement réglée par le potentiomètre **Pulse Width**), et à la quantité de repliement appliquée au signal triangle (initialement réglé par le potentiomètre **Metalizer**).

En position centrale (au marquage 0), aucune modulation n'est envoyée vers ces deux destinations. Dans la plage négative (en-dessous de 0) une quantité croissante mais inversée du signal de LFO est appliquée; dans la plage positive (au-dessus de 0) une quantité croissante du signal de LFO normal est appliquée aux deux destinations.

Pitch

Le potentiomètre rotatif **Pitch** contrôle l'amplitude et la polarité du signal de LFO envoyé à l'oscillateur, modulant ainsi la fréquence de celui-ci.

En position centrale (au marquage 0), aucune modulation n'est envoyée à l'oscillateur. Dans la plage négative (en-dessous de 0) une quantité croissante mais inversée du signal de LFO est appliquée; dans la plage positive (au-dessus de 0) une quantité croissante du signal de LFO normal est appliquée à la fréquence de l'oscillateur.

<u>Filter</u>

The **Filter** knob controls the amplitude and polarity of the LFO signal that modulates the filter's cutoff frequency. At the 0 position (12 o'clock) no modulation is sent to the target. When turned counter-clockwise (below the 0 mark) the **Filter** knob sends an increasing amount of the inverted

LFO signal. When turned clockwise (beyond the 0 mark) the **Filter** knob sends an increasing amount of the normal LFO signal.

<u>Amp</u>

Le potentiomètre rotatif **Amp** contrôle l'amplitude et la polarité du signal de LFO envoyé à l'amplificateur, modulant ainsi le volume de celui-ci.

En position centrale (au marquage 0), aucune modulation n'est envoyée à l'amplificateur. Dans la plage négative (en-dessous de 0) une quantité croissante mais inversée du signal de LFO est appliquée; dans la plage positive (au-dessus de 0) une quantité croissante du signal de LFO normal est appliquée à l'amplificateur.

3.2.7 Séquenceur

Le séquenceur vous permet d'enregistrer une série de notes et ensuite de les lire dans l'ordre que vous les avez jouées . Le séquenceur du MiniBrute SE est un step séquenceur qui vous permet un enregistrement des notes jouées sur le clavier . Il dispose de six séquences au total .

<u>Pattern</u>

Ce bouton permet de choisir entre les 6 séquences enregistrées.

Play/Record

Sélection entre PLAY, RECORD et OFF.

- •□□□□ **Play** En mode de lecture , le séquenceur jouera en fonction du **Mode** sélectionné.
- DDDD Off Éteint le séquenceur.
- Cela permet de passer en mode enregistrement sur une séquence existante. Si vous déplacez le bouton sur record, mais que vous réalisez alors que vous n'avez pas envie d'écrire sur la séquence en cours, vous pouvez déplacer le bouton sur OFF ou éventuellement changer de séquence. Lorsque vous enregistrez votre première note / silence, vous écrivez sur la séquence en cours.

Rate

Le bouton Rate détermine la fréquence d'horloge du séquenceur de 30 bpm à 260 bpm. La LED rouge clignote sous les boutons en synchronisation avec le rythme du tempo.

• □ □ □ Synchronisation interne - C'est le MiniBrute qui crée l'horloge réglable par le bouton Tempo - Le mode de synchronisation peut être défini à l'aide de l'éditeur de logiciels MiniBrute.

• Comparison externe - Le bouton rate agit différemment si le MiniBrute détecte une horloge MIDI externe sur l'entrée MIDI ou le connecteur USB : Si le MiniBrute détecte une horloge MIDI externe elle prendra le dessus sur l'horloge interne. Le potentiomêtre Rate réglera alors les divisions. Les divisions sont : 1 mesure, ½, noire, 1/8e, 1/16e, 1/32e.

<u>Tap / Rest</u>

Le bouton Tap / Rest a deux fonctions:

- 1. Tap Tempo
- 2. Saisie des silences lors de l'enregistrement des séquences.

Tap Tempo - le bouton Tap Tempo permet à l'utilisateur de régler manuellement la vitesse du séquenceur en appuyant sur le bouton en temps réel.

Rest - Le bouton Tap Tempo peut agir comme une source de silence lorsque vous enregistrez une séquence . Lorsque vous êtes en mode **record** , le fait d'appuyer sur le bouton entre les notes vous permettra d'insérer un silence. L'image cidessous montre un exemple du mode **Rest** utilisé pour modifier le rythme dans les pas 3 et 7 d'un motif.

<u>Swing</u>

Le bouton **Swing** règle la quantité de décalage appliqué à chaque note de la séquence. En position 1 le groove strictement «mécanique» en position 4 les notes

sont décalées et sont "hors tempo". 4 positions sont sélectionnables, avec des valeurs de swing variant de 50 % (position 1) à 75% (position 4).

Gate Length

Le sélecteur de longueur définit celle des notes:

- Short ... La longueur de gate est d'environ 25 %.
- Medium La longueur de gate est d'environ 50 %.
- Long ... La longueur de gate est d'environ 75 %.

<v:f eqn="if lineDrawn pixelLineWidth 0"/> <v:f eqn="sum @0 1 0"/> <v:f eqn="sum 0 0 @1"/> <v:f eqn="prod @2 1 2"/> <v:f eqn="prod @3 21600 pixelWidth"/> <v:f eqn="prod @3 21600 pixelHeight"/> <v:f eqn="sum @0 0 1"/> <v:f eqn="prod @6 1 2"/> <v:f egn="prod @7 21600 pixelWidth"/> <v:f eqn="sum @8 21600 0"/> <v:f eqn="prod @7 21600 pixelHeight"/> <v:f eqn="sum @10 21600 0"/> </v:formulas> <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/> <o:lock v:ext="edit" aspectratio="t"/> </v:shapetype><v:shape id="Picture_x0020_457" o:spid="_x0000_i1025" type="#_x0000_t75" alt="sequence ex1.png" style='width:281pt;height:328pt;visibility:visible'> <v:imaaedata src="file://localhost/Users/gdarcey/Library/Caches/ TemporaryItems/msoclip/0/clip_image001.png" o:title="sequence ex1"/> <v:textbox style='mso-rotate-with-shape:t'/> </v:shape><![endif]--> Commented [8]: <!--EndFragment-->

Commented [7]: <!--[if gte vml 1]><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75"

path="m@4@5l@4@11@9@11@9@5xe" filled="f"

o:preferrelative="t

<v:stroke joinstyle="miter"/>

stroked="f">

<v:formulas>

 Hold....Les notes ne sont pas retriggées sauf après un Rest/silence ou au début de la séquence.

MODE

Le sélecteur de mode vous permettra de jouer la séquence de plusieurs façons . Normalement, le séquenceur jouera la séquence dans le sens dont vous l'avez saisi , mais vous pouvez également passer en mode:

- **Forward.....**La lecture de la séquence dans le sens normal. Dans 99 % du temps , il s'agit du paramètre voulu.
- Reverse.....Cela jouera la séquence en sens inverse.
- Alternate.....Lecture de la séquence vers dans le sens que vous l'avez jouée, puis en sens inverse. Les dernières et les premières notes seront répétées pour maintenir une bonne longueur de séquence.
- Octave up......Ce mode va jouer votre séquence en insérant entre entre chacun des pas l'octave supérieur de la note jouée.
- Octave Down......Ce mode va jouer votre séquence en insérant entre entre chacun des pas l'octave inférieur de la note jouée.
- **Random....**Ce mode joue la séquence de manière aléatoire en choisissant les pas.

3.2.8 Contrôles généraux

3.2.8.1 Clavier

Le clavier du MiniBrute couvre une plage de deux octaves, qui peut être étendue en utilisant les boutons **Octave Down/Up** [4.2.8.3]. Le clavier offre également l'aftertouch et le contrôle de vélocité, et peut être également utilisé comme contrôleur MIDI pour d'autres appareils via la prise **MIDI Out** du panneau arrière [4.3.5].

3.2.8.2 Molettes

Le MiniBrute dispose des deux molettes de commande classiques. La molette **Pitch** a une position par défaut au milieu de sa plage, et revient à sa position par défaut en cas de relâchement. Cette molette crée un effet de *pitch* bend, le musicien peut changer sans à-coup vers le haut ou le bas en jouant une note. Le montant du changement est proportionnel à la rotation de la molette, dans un éventail situé entre +/- un demi-ton ou +/- une

octave, réglable par le potentiomètre **Bend Range** [4.2.4.3]. La seconde molette est la molette de **Modulation**. Elle détermine la quantité de signal modulé envoyée à des cibles sélectionnées à l'aide du commutateur **MOD Wheel** [4.2.4.1]. Selon la configuration du commutateur, il contrôle les valeurs du **Cutoff**, du **Vibrato** ou du **LFO**.

3.2.8.3 Octave

La section **Octave** transpose le clavier du MiniBrute en une large tessiture. Une seule LED parmi les cinq LED colorées (-2 rouge,-1 orange, 0 vert ,+1 orange,+2 rouge) est allumée à la fois et l'indique l'octave de la transposition. La sélection par défaut est 0 (LED verte), où la touche Do la plus à gauche correspond au Do2 (130,81 Hz), et le Do le plus à

droite correspond au Do4 (523,25 Hz).

Par exemple, en appuyant sur le bouton **Down** le clavier est transposé vers les bas d'une octave, le Do le plus à gauche est maintenant un Do1, et le plus à droite un Do3. En pressant le bouton **Down** une seconde fois, le clavier est transposé vers le bas d'une octave supplémentaire.

Pour transposer le clavier vers le haut d'une octave, appuyez sur le bouton **Up**.

Avec les boutons **Down** et **Up** le MiniBrute peut jouer les notes du Do0 (32,7 Hz) au Do6 (2093 Hz), voire plus loin grâce à la molette **Pitch**.

Lorsque vous changez d'octave avec les boutons ${\bf Down}/{\bf Up}$, la transposition ne se produit qu'après avoir pressé une touche à nouveau.

3.2.8.4 Brute Factor

Le **Brute Factor** est une caractéristique spéciale du MiniBrute inspirée par une connexion effectuée sur un célèbre synthétiseur monophonique vintage qui reliait la sortie casque à l'entrée audio externe. Le résultat est une sorte de boucle de larsen qui est idéale pour des sons rauques et sales. Cette connectique a été implémentée en interne dans le

MiniBrute, et est contrôlée par le potentiomètre Brute Factor.

La position par défaut de ce potentiomètre est à l'extrémité dans le sens antihoraire, ce qui désactive le **Brute Factor**. Augmenter le potentiomètre ajoute progressivement de la distorsion au son. Avec un réglage faible du **Brute Factor**, la distorsion est lisse et douce, mais devient plus dure lorsque vous tournez le potentiomètre. Lorsque vous êtes au-dessus d'environ 75% de sa plage, le MiniBrute peut se déchaîner et produire des sons à peine contrôlables, au larsen fou.

La fonction **Brute Factor** modifie fortement les caractéristiques du filtre, par conséquent à des réglages extrêmes il faut s'attendre à des résultats imprévisibles. Vous voilà avertis.

3.2.8.5 Volume casque

Le potentiomètre **Phones** contrôle le volume de sortie casque située sur le panneau arrière [4.3.3]. N'oubliez pas d'être prudent avec les niveaux sonores lors de l'écoute au casque.

3.2.8.6 Volume général

Le potentiomètre **Master Volume** définit le volume général de sortie du MiniBrute, lequel est au niveau ligne standard +4dBu. Pour couper le son du MiniBrute, tournez le potentiomètre au minimum dans le sens inverse des aiguilles d'une montre.

3.2.8.7 Accord général

Le potentiomètre **Fine Tune** permet un réglage de précision du pitch de l'oscillateur. La position centrale correspond à la hauteur par défaut (c'est à dire La=440Hz) lorsque vous jouez le deuxième La le plus à droite du clavier lorsque l'**Octave** [4.2.8.3] par défaut est sélectionnée. La gamme complète du potentiomètre **Fine Tuning** est d'environ -2 demi-tons à +2

demi-tons. L'accordage fin permet d'accorder le MiniBrute à d'autres instruments qui sont légèrement désaccordés.

3.3 Panneau arrière

3.3.1 Alimentation électrique

La fiche d'alimentation électrique reçoit la prise d'alimentation externe du MiniBrute. Ne connectez qu'un bloc d'alimentation correspondant aux spécifications suivantes : 12V DC, 1A, centre positif.

Le commutateur d'alimentation permet d'allumer / éteindre

l'instrument.

3.3.2 USB

La sortie **USB** est l'interface avec un ordinateur personnel, permettant la transmission d'événements MIDI, mais également la communication avec le logiciel de configuration MiniBrute Connection [4.4]. Celui-ci permet l'édition de quelques-uns des paramètres internes du synthétiseur, ainsi que la mise à jour de son *firmware* (logiciel embarqué).

3.3.3 MIDI

Les prises avec un contrôlet

Les prises **MIDI Out** et **In** permettent au MiniBrute de communiquer avec un autre appareil MIDI. Le MiniBrute peut servir de contrôleur MIDI polyphonique ou de module de son MIDI.

Si vous utilisez le MiniBrute comme module de son, utilisez un câble MIDI pour relier la prise **MIDI in** du MiniBrute à la sortie MIDI de votre appareil MIDI externe.

Pour contrôler un appareil MIDI externe depuis votre clavier MiniBrute, connectez un câble MIDI du **MIDI Out** jusqu'à l'entrée MIDI de votre appareil MIDI externe.

En sortie d'usine, le synthétiseur est réglé sur le canal MIDI n°1. La sélection du canal MIDI s'effectue via le logiciel MiniBrute Connection [3.4].

3.3.4 Gate Source

Le commutateur **Gate Source** sélectionne quel signal de déclenchement agit sur les enveloppes du MiniBrute.

Le mode **KBD** par défaut permet le déclenchement à partir du clavier.

Le mode **Hold** force l'enveloppe à l'étape de SUSTAIN indépendamment de n'importe quelle autre source de déclenchement. Ce mode est très utile pour les drones, car vous n'avez pas besoin de presser une touche du clavier et vous pouvez avec vos deux mains manipuler les boutons!

En mode **Audio**, un signal de déclenchement est généré quand le niveau du signal de l'entrée **AUDIO In** [4.3.5] atteint un seuil interne prédéfini.

Le seuil de déclenchement Audio, ainsi que d'autres paramètres généraux du synthétiseur, est défini dans le logiciel MiniBrute Connection [3.4].

3.3.5 AUDIO

En utilisant un câble audio asymétrique, connectez la sortie **Master Out** à une table de mixage audio, à une carte son d'ordinateur, ou directement à un amplificateur audio. Le potentiomètre **Master Volume** [4.2.7.6] contrôle le volume de

6 Notes legales

sortie.

Vous pouvez connecter n'importe quelle source audio (synthétiseur, préamplificateur de guitare, sortie de table de mixage, etc.) à la prise **AUDIO In**, et

traiter le signal entrant avec l'amplificateur et le filtre du MiniBrute. Le signal AUDIO In peut également déclencher les enveloppes du MiniBrute si vous sélectionnez Audio comme Gate Source [4.3.4].

Connectez votre casque à la sortie casque et ajustez le volume avec le potentiomètre de volume Phones [4.2.7.5].

3.3.6 CV / GATE IN

Le MiniBrute peut également se connecter à d'autres dispositifs analogiques (synthétiseur analogique, séquenceur pas à pas analogique, etc.) à travers l'interface CV/GATE où CV veut dire Control Voltage (tension de contrôle). La prise 3,5mm Gate In permet à d'autres appareils analogiques de

déclencher les enveloppes du MiniBrute.

Les fonctions principales du MiniBrute (c'est à dire le volume de l'amplificateur, la coupure du filtre, la hauteur de l'oscillateur) sont contrôlés respectivement par les prises jack 3,5mm Amp (to VCA), Filter (to VCF) et Pitch (to VCO).

3.3.7 CV / GATE OUT

CV GATE OUT Le MiniBrute peut également contrôler d'autres appareils analogiques. La sortie mini-jack 3,5mm Pitch Out fournit le signal CV produit par le clavier, le séquenceur ainsi que la molette Pitch. Le signal GATE du clavier et du séquenceur est également disponible par la prise mini-jack 3,5mm Gate Out.

3.4 Logiciel de configuration: MiniBrute Connection

Bien qu'étant analogique, un logiciel de configuration du synthétiseur MiniBrute est disponible, permettant différentes tâches telles que:

Global settinas Sélection du canal MIDI

Sélection de la courbe de vélocité

Sélection de la courbe d'aftertouch

Sélection du gain d'entrée audio

Déclenchement du LFO

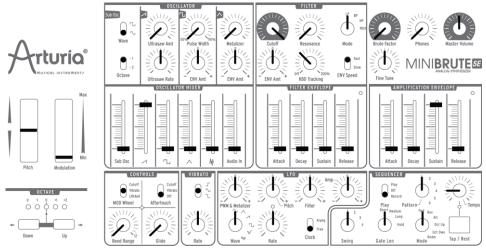
Mode de jeu

Activation du mode legato

Sélection du séquenceur

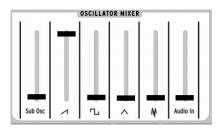
Maintenance Mise à jour du firmware

Le logiciel «MiniBrute Connection» et le manuel utilisateur dédié sont librement téléchargeables depuis le site ARTURIA:
http://www.arturia.com/products/minibruteconnection


4 UTILISER VOTRE MINIBRUTE

4.1 Créons un son de base

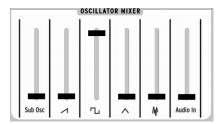
Définissons une base, la configuration initiale pour la conception de votre propre son.


Connectez votre MiniBrute à un amplificateur audio externe et allumez votre MiniBrute comme décrit précédemment [2.3]. Réglez le commutateur **Gate Source** [4.3.4] sur le panneau arrière du MiniBrute en position **KBD**.

Réglez les curseurs et les potentiomètres tels qu'illustrés dans le diagramme suivant:

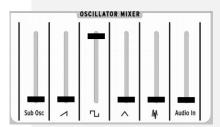
Jouez sur le clavier, vous devriez entendre un son de base en dents de scie riche en harmoniques. Ensuite, nous allons ajouter un peu de dynamique et de vie à ce son en dents de scie plat. Comme indiqué ci-dessous, tournez complètement **Ultrasaw Amt** dans le sens horaire. Cela transforme le son comme s'il y avait deux ou trois oscillateurs légèrement désaccordés, ce qui crée un effet lent de «battement», où les oscillateurs interagissent les uns avec les autres.

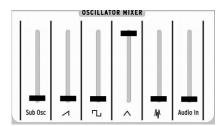
Maintenant, tournez complètement le potentiomètre **Ultrasaw Rate** dans le sens anti-horaire; le battement devient très lent et crée un lent balayage. Appuyez une fois sur le bouton **OCTAVE Down** pour obtenir de profonds sons de cuivres vivants; ensuite pressez une fois le bouton **OCTAVE Up** pour revenir à la tessiture par défaut, tournez complètement le potentiomètre **Ultrasaw Rate** das le sens horaire, et vous entendrez les sons typiques *house music*. L'effet est encore plus prononcé si vous ajoutez un peu de vibrato en tournant légèrement la molette **Modulation**.

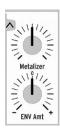


Essayez différents réglages du potentiomètre Ultrasaw

Maintenant, comparons les différentes formes d'onde disponibles.

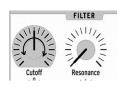

Baissez le curseur *Dents de scie*, et augmentez le curseur *Carré*. Jouez sur le clavier, et vous entendrez un son creux, similaire à celui d'une clarinette. Maintenant, tournez le potentiomètre **Pulse Width** dans le sens horaire, comme indiqué ci-dessous. En tournant le potentiomètre, le son devient un peu plus dur et « nasal », comme un instrument à anche.

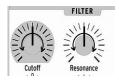




Essayez différents réglages du potentiomètre du Pulse Width

Baissez le curseur Carré et augmentez le curseur Triangle. La forme d'onde Triangle est très basique, avec peu d'harmoniques. Maintenant, tournez le potentiomètre **Metalizer** dans le sens horaire comme indiqué ci-dessous. En tournant le potentiomètre, le son devient plus riche, par l'ajout de partiels, et évoque des sonorités métalliques comme des plaques de métal ou de chaînes métalliques. Le son acquiert une nature criarde, mais reste dans la tonalité.


6 Notes legales


Essayez plusieurs réglages du potentiomètre Metalizer

Ensuite, nous allons contrôler le contenu harmonique de ces formes d'onde de base en utilisant le filtre.

Retournez à notre son initial comme indiqué au début de ce chapitre, ajustez le potentiomètre **Cutoff**. Lorsque vous le baissez (sens anti-horaire), le son brillant Sawtooth perd de plus en plus ses partiels supérieurs et devient plus « sombre » et plus chaud. Ensuite augmentez (sens horaire) la quantité de résonance et manipulez le potentiomètre **Cutoff**. La résonance accrue donne plus de

«contour» au son et avec un réglage à moitié (12 heures), vous entendrez un effet «wha-wha» lorsque vous manipulerez le potentiomètre **Cutoff**. A la résonance maximale, le filtre commence à auto-osciller, il superpose un son d'une hauteur tonale au son filtré. Essayez également les différents modes (LP, BP, HP,

Notch).

Ajustez les paramètres FILTER Cutoff et Resonance

4.2 Modulations du son

Retournez encore une fois à notre son initial de base, indiqué au début de ce chapitre. Réglez le commutateur MOD Wheel de la section CONTROLS sur Vibrato. Maintenant, pendant que vous jouez sur le clavier, tournez la molette de modulation. Le vibrato module l'oscillateur à la vitesse définie par le potentiomètre Rate de la section VIBRATO. Maintenant basculez le commutateur entre ses différents réglages ; la position supérieure créée des trilles vers le haut et la position inférieure des trilles vers le bas.

Ramenez MOD Wheel à sa position minimum et réglez le commutateur Affertouch de la section CONTROLS sur Vibrato. Jouez des notes sur le clavier; L'augmentation de la pression de votre doigt sur la touche augmente la quantité de modulation du vibrato. La réduction de la pression du doigt permet de réduire la quantité de modulation du vibrato. L'Affertouch peut également être assigné au FILTER Cutoff.

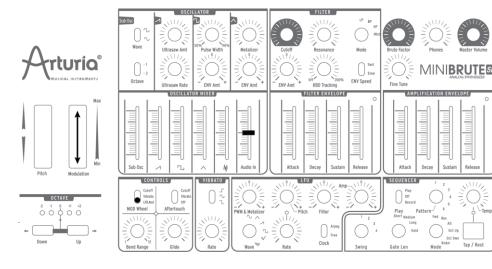
Comme vous avez pu entendre, la modulation du **Vibrato** est très douce et musicale — ce qui est bien, sauf si vous souhaitez produire des effets sonores bizarres de l'espace! Pour des effets de modulation plus prononcés, nous allons utiliser le **LFO**, qui dispose de six formes d'onde de modulation différentes. Ces formes d'onde peuvent moduler la plupart des autres sections MiniBrute: la **PWM** et le **Metalizer**, le **pitch** de l'oscillateur, le **cutoff** du filtre, et **l'amplitude** du son.

Amusons-nous à moduler la hauteur de l'oscillateur. Réglez tous les curseurs, les potentiomètres et commutateurs comme indiqué dans le patch initial [5.1], ensuite pressez une touche et ajustez le potentiomètre **Pitch** de la section **LFO**. Essayez également différents réglages du potentiomètre **Rate**. Essayez et testez les différentes formes d'onde du **LFO**; par exemple sélectionnez la cinquième forme d'onde **random steps** (étapes aléatoires), réglez le commutateur **MOD Wheel** de la section **CONTROLS** sur **LFO Amt**, puis ajustez le potentiomètre **Pitch** au maximum (sens horaire). Pressez n'importe quelle touche et ajustez la quantité de modulation avec la molette modulation **Modulation**.

Les quatre potentiomètres de modulation ne vous permettent pas seulement de régler la quantité de modulation, mais également leur polarité (si l'accroissement de la modulation augmente ou diminue la valeur d'un paramètre). Cela est

particulièrement évident lors de la modulation du pitch avec la modulation en forme d'onde dents de scie. Lorsqu'il est tourné vers le +, le pitch glisse lentement vers les aigus jusqu'à la hauteur maximum, puis revient brusquement à la hauteur la plus faible. Quand il est tourné vers le -, le pitch glisse vers les graves jusqu'à la hauteur la plus grave, puis revient brusquement à la hauteur maximum.

Une autre source importante de modulation est le **FILTER ENVELOPE.** Cela offre un contrôle dynamique de la coupure du filtre, de la largeur d'impulsion de l'oscillateur, ou de la dureté du **Metalizer**. La polarité et la quantité de **FILTER ENVELOPE** sont contrôlables par les potentiomètres **Env Amt**, très utiles pour créer des sons vivants.


4.3 Traitement des sons externes

Connectez votre source externe dans la prise 6,35mm Audio In [4.3.5] dans le panneau arrière du MiniBrute. Votre source audio doit fournir un signal de niveau ligne, donc avec une guitare électrique vous devrez connecter un pré-ampli ou un autre processeur (par exemple: compresseur, simulateur d'ampli, multi-effets) entre la guitare et l'Audio In. Ajustez le curseur Audio In de l'OSCILLATOR MIXER au niveau désiré.

Lors de l'utilisation d'une entrée audio externe, sélectionnez un réglage **Gate Source** qui correspond à la manière dont vous voulez traiter la source externe.

- Pour déclencher les enveloppes avec le clavier, réglez le commutateur **Gate Source** sur le panneau arrière du MiniBrute sur la position **KBD**.
- Pour entendre la source externe continuellement et la traiter sélectionnez la position Hold.
- Pour déclencher les enveloppes quand le niveau de signal externe atteint un seuil fixe, sélectionnez la position **Audio In**; vous pouvez changer le niveau du seuil en utilisant le logiciel MiniBrute Connection Software 3.4.

La configuration suivante produit un effet auto-wha combiné à un tremolo. La molette **Modulation** contrôle la quantité de tremolo (vérifiez que le commutateur **MOD Wheel** de la section **CONTROLS** soit réglé sur **LFO Amt**).

5 NOTES LEGALES

5.1 Exclusion de responsabilité pour les dommages indirects

Ni ARTURIA ni qui que ce soit ayant été impliqué dans la création, la production, ou la livraison de ce produit ne sera responsable des dommages directs, indirects, consécutifs, ou incidents survenant du fait de l'utilisation ou de l'incapacité d'utilisation de ce produit (y compris, sans s'y limiter, les dommages pour perte de profits professionnels, interruption d'activité, perte d'informations professionnelles et équivalents) même si ARTURIA a été précédemment averti de la possibilité de tels dommages. Certaines législations ne permettent pas les limitations de la durée d'une garantie implicite ou la limitation des dommages incidents ou consécutifs, auquel cas les limitations ou exclusions ci-dessus peuvent ne pa s'appliquer à vous. Cette garantie vous confère des droits juridiques particuliers, et vous pouvez également avoir d'autres droits variant d'une juridiction à une autre.

5.2 FCC Information (USA)

DO NOT MODIFY THE UNIT! This product, when installed as indicate in the instructions contained in this manual, meets FCC requirement. Modifications not expressly approved by ARTURIA may avoid your authority, granted by the FCC, to use the product.

IMPORTANT: When connecting this product to accessories and/or another product, use only high quality shielded cables. Cable (s) supplied with this product MUST be used. Follow all installation instructions. Failure to follow instructions could void your FFC authorization to use this product in the USA.

NOTE: This product has been tested and found to comply with the limit for a Class B Digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide a reasonable protection against harmful interference in a residential environment. This equipment generate, use and radiate radio frequency energy and, if not installed and used according to the instructions found in the users manual, may cause interferences harmful to the operation to other electronic devices. Compliance with FCC regulations does not guarantee that interferences will not occur in all the installations. If this product is found to be the source of interferences, which can be determined by turning the unit "OFF" and "ON", please try to eliminate the problem by using one of the following measures:

- Relocate either this product or the device that is affected by the interference.
- Use power outlets that are on different branch (circuit breaker or fuse) circuits or install AC line filter(s).

- In the case of radio or TV interferences, relocate/ reorient the antenna. If the antenna lead-in is 300 ohm ribbon lead, change the lead-in to coaxial cable.
- If these corrective measures do not bring any satisfied results, please the local retailer authorized to distribute this type of product. If you cannot locate the appropriate retailer, please contact ARTURIA.

The above statements apply ONLY to those products distributed in the USA.

5.3 Canada

NOTICE: This class B digital apparatus meets all the requirements of the Canadian Interference-Causing Equipment Regulation.

AVIS: Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

5.4 Europe

Ce produit se conforme aux spécifications de la directive européenne ${\it CE}^{89/336/{\it EEC}}$.