Synthesis models

Classic analog waveforms

Model	Description	Timbre	Color
CSALU	CS-80 imperfect saw	Notch width	Notch polarity
/\/	Variable waveshape	Waveshape	Distortion/ filter
/ /	Classic saw- tooth/square	Pulse width	Saw to square
FOLD	Sine/triangle into wavefolder	Wavefolder amount	Sine to triangle

Digital synthesis

_ _ _ _	2 detuned harmonic combs	Smoothness	Detune
SYN SYN/I	2 VCOs with hardsync	VCO fre- quency ratio	VCO balance
/l/l X3 X3 /\ X3 SI X3	Triple saw/ square/triangle/ sine	Osc. 2 detune	Osc. 3 detune
RING	3 ring-modulat- ed sine waves	2/1 frequen- cy ratio	3/1 frequen- cy ratio
ΛΛΛΛ	Swarm of 7 sawtooth waves	Detune	High-pass filter
/1/1_1_1	Comb filtered sawtooth	Delay time	Neg./pos. feedback

TOY:	Low-fi circuit- bent sounds	Sample reduction	Bit toggling
ZLPF ZPKF ZBPF ZHPF	Direct synthesis of LP/Peaking/ BP/HP filtered waveform	Cutoff frequency	Waveshape
vosm	Sawtooth with 2 formants	Formant 1 frequency	Formant 2 frequency
VOLUL VFOF	Low-fi or hi-fi vowel synthesis	a, e, i, o, u	Gender
HARM	Additive synth, 14 harmonics	Harmonic #	Spectral peakedness
FM FBFM WTFM	Plain/feedback/ chaotic 2-opera- tor FM	Modulation index	Frequency ratio

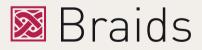
Physical simulations

PLUK	Plucked strings	Decay	Plucking position
BOWD	Bowed string	Friction	Bowing position
BLOLU FLUT	Reed and flute simulations	Air pressure	Instrument geometry

Percussions

BELL DRUM	Bell and metallic drum	Decay	Harmonicity
KICK	808 bass drum	Decay	Brightness

сутв	Cymbal noise	Cutoff	Noisiness
SNAR	808 snare drum	Tone	Noisiness/ decay


Wavetables

	WTBL	21 wavetables	Smooth wavetable position	Quantized wavetable selection
	WMAP	16x16 waves	X position	Y position
	LULIN	Linear wavetable scanning	Wavetable position	Interpola- tion quality
	ШТХЧ	Polyphonic wavetable	Wavetable position	Chord type

Noise

NOIS	Tuned noise (2-pole filter)	Filter resonance	Response, LP to HP
TLUNQ	Noise sent to 2 resonators	Resonance	Resonators freq. ratio
CLKN	Clocked digital noise	Cycle length	Quantization
CLOU	Sinusoidal gran- ular synthesis	Grain density	Frequency dispersion
PRTC	Droplets granu- lar synthesis	Grain density	Frequency dispersion
OPSK	Modem noises	Bit-rate	Modulated data

Macro oscillator

Installation

Braids requires a **-12V / +12V power supply** (2x5 pin connector). The ribbon cable connector must be aligned so that the red stripe of the ribbon cable (-12V) is on the same side of the module's power header as the "Red stripe" marking on the board.

The module draws **15mA** from the -12V rail and **100mA** from the +12V rail.

Online manual and help

The full manual can be found online at mutable-instruments.net/modules/braids/manual

For help and discussions, head to mutable-instruments.net/forum

Calibration

Calibrating Braids is as easy as playing a C2 and a C4 note from an accurate MIDI to CV interface, sequencer or other CV source.

More information about this optional step is provided in the online manual.

Front panel

Controls

A. Display and encoder. When the module is powered on, the encoder selects the active synthesis model.

B. C. Fine and coarse frequency controls.

D. FM attenuverter. Adjusts the amount and polarity of frequency modulation from the FM input.

E. F. Timbre control, and **timbre modulation attenuverter**. Primary dimension of waveform control.

G. Color. Secondary dimension of waveform control. Depending on the active oscillator model, **TIMBRE** and **COLOR** will modify the sound in different ways. Please refer to the table on the other side.

Inputs and Outputs

1. Trigger input. Resets the oscillator phase or generates an excitation signal. Physical or percussive models like *PLUK* or *KICK* need this trigger signal to start playing a note! The trigger input can also be used to trigger an internal AD envelope.

2. V/Oct. Main frequency control input, with V/Oct scale.

3. 4. 5. Frequency, timbre, and color CV inputs.

6. Audio output. The synthesis model or the position of **TIMBRE** and **COLOR** may have an impact on output level.

Settings

Click the encoder to display a list of settings. Scroll through the settings and click to modify one of them. Once the value has been modified, click to confirm and go back to the menu. Selecting the first option (*LUAVE*) saves all the current settings in memory and brings you back to the module's initial state (oscillator model selection).

Here is an overview of the most important settings:

META repurposes the FM input: when **DN**, the FM CV input can be used to control the active synthesis model.

BITS and *RATE* control the bit-depth and sample rate of the audio output, for more digital grit and crunchiness!

TSRC, when set to *AUTO*, automatically generates a trigger on the **TRIG** input when a sharp note change is detected on the **V/OCT** input.

INATT and *INDEC* are the attack and decay time of an internal AD envelope generator.

INFM, INTIM, INCOL and INVCA control the amount of frequency, timbre, color, and amplitude modulation from the internal AD envelope. When one of these settings is not null, the **TRIG** input actually triggers the AD envelope instead of resetting the oscillator phase.

ONTZ quantizes the **V/Oct** input to one of 50 preset scales, the root note of which is selected by *ROOT*.

FLAT, DRFT, SIGN emulate various analog-style quirks.