1008- 1008-		E9		9639 9649		STA	*PNTR DSP	ZERO SCORE POINTER
1000	1.21.3			en-ser		11100		EKELEZA PI
							SLPØ	:LOOP UNTIL DONE
						BOS	RDKY ACTN	GO READ THE KEYBOAF : AND IF NO NEW KEYS.
1019-								:NEW KEY - A "CONTRI
1018-	BØ					BCS	CTPL	:YES - BRANCH TO CON
		8	OF	MAIN	110	Char	SFDru	JMS "SPARE" KEY!
101F-		-			HIE	1 15	SF	ALLI SRANCH
				9750	HTMU	100	25-1-	MENI ENTRY MODE OF
1021 1023-		20	EX	oen	Inc	ALL	GIAS 31	KRTH ENTRY MODE, GE
1025-	B9							:GET DRUM SIGNATURE
	A6							:GET SCORE POINTER
102A-				0800		STA	SCOR, X	SAVE DRUM SIG IN SI
	20		10	081	220	JSR.	EL TY	:PLAY THE DRUM BEAT
	40			0834	226	TOP		:GET COMMAND ADDRES:
1033- 1036-	89 85	D1	មាម	05 40	1	CIA	- POTN-01	
1038-	20	86	99	ams	Lit	GI	ions	:AND GO TO COMMAND :
1038-	40	14		0860		JMF	SLP1	:THEN LOOP FOR MORE
				0870				
				0880	:PLA	Y SUE	BROUTINE	
				0890				art cuppercial USB
103E-	A4	EB	50	0900	PLAY			GET EXPRESSION VAR
1040- 1043-	8D	40 7F	62	0910 0920		STA	OUTP	:RESET STROBE BIT
1045-	88			0930	PLAG	DEY		:DELAY FOR THE EXP.
1046-	DØ	FD		0940			PLRØ	LOOP UNTIL DONE
1048-		40	08	0950			OUTP	:AND TURN DRUM "OFF
1048-	E6	E9		0960		INC	*PNTR	:INCREMENT SCORE PO
104D-	A6	E9		0970			*PNTR	:PLACE IN X REGISTE
104F-	SE	20	08	0980			DSP	:AND SHOW IN DISPLA
1052-	60			0990		RTS		:THEN RETURN
				1000			u_aren Ti	MPORTANT TO TEMPO
				1010	REM	JAC	T-UFDO 1	TO TO TO
1053-	20	99	FF	1030	RDKY	JER	DECD	:PIEBUG KEYBOARD SU
1056-	BØ	05		1040				:SAME KEY - JUST DE
1058-	A2	88		1050			0	
105A-							*CNTR	:ZERO TEMPO COUNTER
© 1982				1070				CET U OND U DEGIST
1050-	88	20			DLY			SET X AND Y REGIST DELAY PARAMETERS
1 , 4	A		20	Tro		S	Inc.	
1020 14/ 14	/ileh							
	CA		Oklanol	1120	OK /311	DEX	5)843-9626	
1964-								

COMPUTER DRUMS

by John S. Simonton, Jr.

Are you ready for a computer peripheral that's fun, instructive, low in cost and provides an impressive demonstration that even your least technically inclined friends can understand? How about this one - a computer controlled drum set.

Yes, there are a lot of automatic percussion units available and yes, they're pretty much a drag. Useful, under just the right set of circumstances, but even then their incessant BOOM-chick-chick can really turn into a BUMMER.

Now, think about computer drums. You're not forced into using what somebody else thinks is a cha-cha; you write your own rhythm pattern for the specific thing you're doing, even if it's in 7/16 time. and the real world niceties like bridges and intro's? They're simply not possible with conventional electronic drummers. But with drums tied to a computer - no sweat.

If you're interested, we've got a lot of ground to cover; drum circuits, interfacing and programming. Let's get on with it.

DRUM OSCILLATORS

Most drum units generate their percussion sounds using a simple active filter section like that shown in figure 1. There are two ways to think of this circuit. Either it is almost an oscillator which when excited by a pulse "rings" for a short period of time; or, it is a high Q filter section which extracts from a pulse excitation function a single sine wave component. Either of these explanations is valid. Either produces an accurate description of what happens. When you hit the circuit with a pulse it responds by generating a damped sinusoid, which is the electrical analog of the mechanical action of a drum head.

Table 1 shows a realization of this circuit when using one stage of an LM3900 type quad current differencing amplifier as well as the component values required to generate a number of different drum/percussion sounds.

DRUM	C1	C2,C3	C4	R1	R2	R3	R4
Wood Block	.01	.001	.005	10 K	68 K	10 K	1 Meg
Clave	500pf	500pf	.005	33K	68 K	10 K	330K
Tom-Tam	.01	.001	.005	39 K	68 K	10 K	330К
Conga	.01	.001	.005	68K	68 K	10 K	ззок
Bass (L)	.01	.005	.05	15 K	47 K	10 K	220 K

Table 1 - Component Values for Various Drums
L=light H=heavy

Snare drums and cymbals require a keyed noise source with filtering. Figure 2 shows a circuit that works well for snares - and don't forget that a drum circuit must be used at the same time to produce what is known as the "strike tone".

Building a complete drum set is simply a matter of duplicating these circuits for as many different sounds as you require and resistively mixing them all together to a common audio buss.

INTERFACE

There is only one difficulty with using drum circuits like those shown as a peripheral to a computer and that is that the computer is just too fast. Our filter circuits like a trigger pulse that is at least several milli-seconds long whereas the average write cycle of a microprocessor (and we will be playing these drums by "writing" to them) is on the order of a few micro-seconds. The typical response of our drums to a micro-second long pulse looks like this:

As you can see, it doesn't strain even my non-existant artistic abilities.

If you own one of the computers that's all pretty and boxed up, you can refer to a section of your systems manuals entitled "slow peripherals". In the parlance of the field that's what the drums are.

I'm going to assume that you're going to be using someone's low cost "evaluation" unit. And further, that your manuals are typical of most of the ones that I've seen in that they tell you just enough to make sure that your level of confusion is appropriate to this "complex" field. My comments here are specificly for National's SC/MP evaluation kit, but with slight modifications are applicable to most others.

Figure 3 (shown on the following page) shows an extremely simple interface adapter that has performed well for me. As you can see, it's nothing but three packages of quad CMOS NOR gates. Here's what happens.

As I said before, playing the drums from a program standpoint will be a memory write operation from the processors accumulator to the memory location occupied by the drum set. When the program says write (actually STROBE) the group of ones and zeros which we will have loaded into the accumulator to produce the drum sounds that we want are put out on the machine's data lines while the address of the memory location into which we are going to write appears on the

processor's address lines. Very shortly after the valid address and data appear on their respective processor lines, the machine issues a WRITE command (in the SC/MP, the NWDS line goes to ground indicating a write). As we shall see shortly, when the machine issues both a write command and the address that we've selected for the drum card at the same time it causes the SEL (select) line on the interface to go high which is buffered by gates Gl and G2.

The output of G2 is coupled by the time delay circuit R1 and C1 to the input of G3. The output of G3, which was in a high state, switches low as soon as the SEL line is activated and produces two major results. First, any of the data lines which have a zero on them, when NORed with the output of G3, will cause the outputs of thier respective gates (G4-G10) to change state. These gates changing state cause the drum ocsilator attached to that gate to sound.

Figure 3 - Drum Interface

Also, the output of G3 is routed back to a pin on the processor called NHOLD. This is an interesting input to the processor, because when this pin is grounded it causes the machine to STOP with the data and address lines held in the same state they were when the hold command was issued. This has the effect of latching the address and data lines of the processor for as long as NHOLD remains low (a time determined by the Rl, Cl time constant) and serves to stretch the micro-second write cycle out to the few milli-seconds required by the drums.

We need to discuss programming some, but before we do let's consider for a moment which memory location(s) we want the drum set to occupy. If you are using one of the larger systems by SWTP, IMSAI or MITS (or even some smaller systems such as the F-8), the problem is academic. These machines have provisions for output ports and you will use them - why fight the system. In these cases the SEL and NHOLD lines can be used for the handshaking "data ready" and "data accepted" lines respectively.

On smaller systems you will want to base your decision on what the cost (both financial and emotional) will be of using a specific location or group of locations. May I make a suggestion that might not occur to you otherwise? Use the same group of addresses that is occupied by whatever ROM your system has. This is not "ordinary" (you never write into the ROM locations with the usual programming because it won't do anything - they're READ ONLY MEMORY) but, there's nothing wrong with it and they have the tremendous advantage of being locations that are already decoded. On the SC/MP this is accomplished as shown in figure 4.

Figure 4 - SC/MP Address Decode

PROGRAMMING

There's another big plus to using the PROM locations as an output port, this one from a programming standpoint. And we're both going to have to go slowly here because it can be confusing otherwise.

ROM, even in minimal systems, represents a chunk of memory - ordinarily at least 256 bytes. This means that in a machine like the SC/MP which has 16 address "lines" (some are multiplexed onto the data bus, but forget that) only the most significant 8 bits are required to address the output port.

Most machines have a scheme of addressing memory which is refered to as "indexed" and they have, internally, one or more 16 bit wide "index" registers that can be used to "point" to a specific memory location. Since most of the processors used by hobbyist work on only 8 bits of information at a time it is obvious that it will take two "groups" of instructions to load the 16 bits into the index register one group to load the "low order" 8 bits and a second group to load the "high order"8 bits. But if we're using 256 bytes of memory occupied by ROM as a single output port, we don't have to worry about the low order 8 bits, they can be anything and we will still be addressing the output port. Since they can be anything and still work, we don't have to worry about loading them, and as a result we've saved at least three (and probably much more in a complete program) lines of program code.

Programming for the drums can be as simple or elaborate as you like. Regrettably, there is sufficient space here for only a few tips. The instructions for the experimenter's kit goes into much greater detail with sample program listings for a variety of machines.

Let me point out a few hardware considerations that will affect programming. Each bit of data in the accumulator at the time of the write operation will determine whether a specific drum sounds or doesn't sound. A typical coding arrangement was shown in figure 3 and with this arrangement the drums would be coded like this (remember that a 0 sounds the drum).

drum sound	binary	hex	octal	
heavy bass	11111110	FE	376	
light bass	11111101	FD	375	
snare	11111011	FB	373	
tom-tom	11110111	F7	367	
conga	11101111	EF	357	
clave	11011111	DF	337	
wood block	10111111	BF	2 7 7	

This is confusing. It would be much easier if when we were programming we could just write a l for the drum we want to sound. We can do that if we write a program that reads a byte of drum data but before writing it to the drums does an Exclusive Or Immediate with FF. As many of you will realize, this has the effect of complementing every bit of data so that the drum sounds we want can be written in memory in this more logical form:

binary	hex	octal	
00000001	01	001	
00000010	02	002	
00000100	04	004	
00001000	08	010	
00010000	10	020	
00100000	20	040	
01000000	- 40	100	
	00000001 00000010 00000100 00001000 00010000 00100000	00000001 01 00000010 02 00000100 04 00001000 08 00010000 10 00100000 20	

This is particularly easy if we want to sound two drums simultaneously; for example a heavy bass down beat and a snare drum at the same time would be in binary 00000101.

For very simple repeating patterns, this complementing action even has an advantage in that we can use FF as a repeat indicator that is stored along with the drum data. Program flow would be 1) load drum data, 2) complement (XOR IMM, FF) 3) check for zero (111111111 complemented is 000000000) and if zero start again, 4) if not zero write accumulator to drums, 5) delay (tempo), 6) get next data and go to 2.

Various machines have an amazing variety of ways to test the accumulator (test for zero, not zero, pos., neg., carry, overflow, ect.) but one thing they all have is a test for zero.

Notice that the 8th data bit in the arrangements that I've shown does not have a drum associated with it. There are two reasons, first, we've got a bunch of drum sounds already and secondly, we can use the 8th bit in our programming as an indicator that the data we've loaded is not to be played as drums, but to be interpreted as an instruction. A simple example would be to suppose that we have a rhythm pattern that we wish to play 16 times and then stop. We can use a program based on the flow chart shown in figure 5 to accomplish this. Notice that in this case the program reads the drum data, tests to see if it is in fact an instruction, and if not plays it. When it does get the byte that is the instruction it decrements the "count", saves the data back in the location it got it from, and iterates the pattern. On the

last pass through the program the decrement operation on the "instruction data" results in the last seven bits being 0, which tells the machine that it is through (or to go to the next pattern, or whatever). There are, of course, as many ways to handle this as there are people to write programs.

PARTS LIST

DESC. (alternate marking)

	FI	EXED RESISTORS
1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 5 8 11 5	47 ohun 470 ohun 2200 ohun 6800 ohun 10K 15K 18K 22K 27K 33K 39K 47K 68K 82K 150K 220K 330K 1 Megohm 2.2 Megohm	yellow-violet-black yellow-violet-brown red-red-red blue-grey-red brown-black-orange brown-grey-orange red-red-orange red-violet-orange orange-orange-orange orange-white-orange yellow-violet-orange blue-grey-orange grey-red-orange brown-green-yellow red-red-yellow orange-orange-yellow brown-black-green red-red-green
	3.9 Megohm	orange-white-green

QNTY

VALUE

CERAMIC DISK CAPACITORS

7	.001 MFD.	102
7	.005 MFD.	502
5	.01 MFD.	103
9	.05 MFD.	503
	•	

ELECTROLYTIC CAPACITORS

1	1 MFD./ 15V.	Greater voltage ratings acceptable.
2	2.2 MFD./ 15V.	
1	33 MFD./ 15V.	59

SEMICONDUCTORS

2	LM3900 (3401)	QUAD "NORTON" AMPS
3	4001	QUAD NOR GATE PACKAGE
1	2N5129 OR 2N4124	TRANSISTOR
1	2N2712 OR 2N3391	NOISE TRANSISTOR

MISCELLANIOUS PARTS

6		50K ohm	TR IMMER	POTENTIOMETERS
1		OUTPUT CABLE WITH	RCA PHONO	PLUG
4	in.	ADHESIVE FOAM TAP	E	
1		9 VOLT BATTERY CO	NNECTOR	

ASSEMBLY

Assembly of the EK-2A computer interfaced drum set is fairly straight-forward thanks to the fully imprinted circuit board. Begin assembly by thoroughly cleaning the circuit board with a steel wool or Scotch Bright (R) pad. The board must be bright and shiny to accept the solder and failure to clean the board will result in poor solder joints and will void the warranty on the kit.

Continue assembly by soldering all the resistors in place. Save the lead clippings for use as jumpers in later steps.

PART	VALUE	COLOR CODE
() R1	10K	brown-black-orange
() R5	10K	brown-black-orange
() R41	10K	brown-black-orange
() R46	10К	brown-black-orange
() R57	10K	brown-black-orange
() R59	10K	brown-black-orange
() R61	10K	brown-black-orange
() R63	10K	brown-black-orange
() R65	1 OK	brown-black-orange
() R68	10K	brown-black-orange
() R70	10K	brown-black-orange
() R2	6800 ohm	blue-grey-red

```
2.2 Meg
                                    red-red-green
() R3
              2.2 Meg
() R4
                                    red-red-green
                                    red-red-green
() R11
              2.2 Meg
                                    red-red-green
() R12
              2.2 Meg
                                    red-red-green
              2.2 Meg
() R19
() R20
               2.2 Meg
                                    red-red-green
                                    red-red-green
() R27
              2.2 Meg
                                    red-red-green
() R28
              2.2 Meg
() R35
              2.2 Meg
                                    red-red-green
(°) R36
               2.2 Meg
                                    red-red-green
                                   red-red-green
              2.2 Meg
() R51
() R6
              1 Meg
                                    brown-black-green
() R8
                                    brown-black-green
              l Meg
              1 Meg
() R14
                                    brown-black-green
() R22
               l Meg
                                    brown-black-green
                                    brown-black-green
() R30
               1 Meg
() R38
              1 Meg
                                    brown-black-green
() R43
               1 Meg
                                    brown-black-green
                                    brown-black-green
() R52
               1 Meg
() R9
              18K
                                    brown-grey-orange
() R17
              18K
                                    brown-grey-orange
() R25
              18K
                                    brown-grey-orange
() R33
              18K
                                    brown-grey-orange
() R10
              3.9 Meg
                                   orange-white-green
                                    orange-white-green
() R18
              3.9 Meg
() R26
                                    orange-white-green
              3.9 Meg
() R34
              3.9 Meg
                                    orange-white-green
() R42
              3.9 Meg
                                   orange-white-green
() R13
              33K
                                    orange-orange-orange
() R16
              330K
                                   orange-orange-yellow
                                    orange-orange-yellow
() R24
               330K
              330K
() R32
                                    orange-orange-yellow
              330K
                                    orange-orange-yel low
() R56
              330K
() R69
                                    orange orange yel lov
              39K
                                    or sage white orange
() R21
() R29
              68K
                                    blue grey orange
                                    blue-grey-orange
() R58
              68K
() R60
              68K
                                    blue-grey-orange
                                    blue-grey-orange
() R62
              68K
                                    blue-grey-orange
() R64
              68K
() R37
               15K
                                    brown-green-orange
() R40
               220K
                                    red-red-yellow
() R45
               220K
                                    red-red-yellow
               2200 ohm
() R44
                                    red-red-red
() R47
              82K
                                    grey-red-orange
() R49
              470 ohm
                                    yellow-violet-brown
```

() R50	150K	brown-green-yellow
() R54	150K	brown-green-yellow
() R55	150K	brown-green-yellow
() R53	27К	red-violet-orange
() R66	47K	yellow-violet-orange
() R67	22K	red-red-orange
() R71	47 ohm	yellow-violet-black

Next install the ceramic disk capacitors. Values are in microfarad except picofarad as indicated.

PART	VALUE	ALTERNATE MARKINGS
() C1	.01	103
() C11		103
() C16		103
() C21		103
() C36		103
() C2	.001	102
() C3	.001	102
() C12	.001	102
() C13	.001	102
() C17	.001	102
() 018		102
() 032	.001	102
() C4	.005	502
() C9	.005	502
() C14	.005	502
() C19	.005	502
() C22	2 .005	502
() C23	.005	5 02
() C35	.005	502
() C5	.05	503
() C10	.05	503
() C15	.05	503
() C20	.05	503
() C24		503
() C25	.05	503
() C26	.05	503
() C31	.05	503
() C37	.05	503
() C6	500 PFD.	500
() C7	500 PFD.	500
() C8	500 PFD.	500
() C27	500 PFD.	500
() C28		500

Next install the electrolytic capacitors. Note that these parts are polarized and that one lead will have either a "+" or a "-" symbol associated with it on the case. Note also that one of the pair holes in the circuit board is marked "+". If the "+" lead of the part is

marked, it should go through this hole. If the "-" lead is marked, it should go through the unmarked hole.

The capacitor must be installed with the proper orientation for the unit to operate properly.

Note that the voltage specified is the minimum acceptable and that parts supplied with individual kits may have higher working voltages and still be the appropriate part.

PART	VALUE		
() C29 () C34	2.2 MFD./ 15 VOLT 2.2 MFD./ 15 VOLT		
() C30	1 MFD./ 15 VOLT		
() c33	33 MFD./ 15 VOLT		

Install the six trimmer potentiometers by pushing their solder tabs through the holes provided in the circuit board

PART	VALUE			
() R7	50K TRIMMER			
() R15	50K TRIMMER			
() R23	50K TRIMMER			
() R31	50K TRIMMER			
() R39	50K TRIMMER			
() R48	50K TRIMMER			

There are several wire jumpers on the circuit board which are indicated by a solid line broken with the letter "J". Using the resistor clippings saved from previous steps or the bare wire provided, form and install these jumpers.

The 1/0 configuration jumpers marked with the dashed lines will be installed in later steps.

QUANITY	ORIENTATION		
() 7	HORIZONAL JUMPERS		
() 4	VERTICAL JUMPERS		

Install the two transistors QI and Q2 following the parts placement designators drawn on the circuit board.

Note that transistor Ql has been selected for it's noise characteristics and is easilly identified by it's missing center lead.

All semiconductors, both transistors and the integrated circuits which follow, are heat sensitive and care must taken during their installation to prevent their being subjected to too high a temperature during soldering. The safest procedure is to grasp the lead being soldered with a pair of needle-nose pliers or hemostats during this operation.

PART	TYPE	-			
() Q1	2N2712 OR:	2N 339 1	SELECTED	FOR	NOISE
() 02	2N5129 OR	2N4124			

Install the integrated circuits. Note that orientation of the IC's is keyed by an identifying notch which appears iether as one end of the body of the part or by a recessed dot which is adjacent to and identifies pin 1.

PART	TYPE
() IC1	LM3900 OR CA3401
() IC2	LM3900 OR CA3401
() IC3	4001 QUAD NOR GATE
() IC4	4001 QUAD NOR GATE
() IC5	4001 QUAD NOR GATE

- () Install the output co-ax cable by stripping away aproximately 3/4" of the outer covering to expose the shielding wire or braid. Carefully unbraid the shielding wire and then twist the strands together. DO NOT TIN. Strip 1/4" of insulation from the inner conductor and twist and tin the exposed wire strands. Connect the center conductor of the co-ax to the PC hole marked "OUT" and the sheild to the adjacent hole marked with the ground symbol ().
- () Solder the RED lead from the battery connector snap to the circuit board point marked "+9".
- () Solder the BLACK wire from the battery snap to "-9".

If the drum set interface is to be by means of dip-header terminated cabling, as when connecting to the PAIA 8700 computer, install the 14 pin dip socket as the location provided in the lower left hand corner of the board.

() Install the I/O connector socket.

THIS COMPLETES ASSEMBLY OF THE EK-2A COMPUTER DRUM KIT

1/O Connector

*NOTE: Adjust PC mount trim pots in direction of arrow printed on board until sustained oscillation occurs, then back off until oscillation just quits.

DRUMSYS 0.6 DEVELOPMENTAL VERSION USER'S NOTES

Load DRUMSYS 0.6 into the PAIA 8700 Computer/Controller using the following entry sequence:

0-0-0-0-0-0-F-F-0-1-1-1-TAPE

When the program has loaded successfully the display will show "AA". There are at least two copies of the program on the tape. If for any reason the first one will not load, try the second.

When properly loaded, begin the program running form the starting location \$0000 using this sequence:

0-0-0-0-RUN

With the program running, the control keys of the 8700 take on different meanings than that assigned by the PIEBUG Monitor, as outlined below:

DRUM SOUNDS ARE CONTROLLED BY THE KEYS 0-7

KEY#	DRUM SOUND
0	REST (NO DRUM)
1	LIGHT BASS
2	HEAVY BASS
3	SNARE
4	TOM-TOM
5	CONGA
6	WOOD BLOCK
7	CLAVE

Pressing any of the drum sound keys (0-7) causes termination of the current "mode" of operation and reversion to the "DRUM ENTRY" mode. Note that while touching drum sound keys, the corresponding drum sound is produced by the EK-2A and the displays count in hexadecimal. The number shown in the display is the "event number" of the drum sound produced.

In this version of the program, any of the keys 8-F cause the system to be reinitialized. Any score saved in memory when one of these keys is touched will be erased.

The various modes of operation for Drumsys are activated by touching one of the two rows of keys on the 8700 keyboard. Mode names and the corresponding keys that select them are as follows:

KEY NAME	MODE SELECTED
RUN	PLAY
DISP	SET TEMPO
BACK	BACK SPACE
ENTER	STOP/STEP
PCH	CONTINUE
PCL	DUMP SCORE
TAPE	LOAD SCORE
REL	STROBE DRUM

The actions produced by these various modes of operation are as follows:

PLAY - causes the drum score currently in memory to be played at the current tempo rate. Always starts at the beginning of the score (EVENT #0)

SET TEMPO - changes tempo value. When touched, this key causes a counter which will be the tempo value to begin counting. Counting is terminated by touching any other control key. Typically, this control would be used by touching first "TEMPO SET" then "PLAY". The time between touching these two keys is the time between events during playback.

BACK SPACE - causes the program to step through the current score backwards, for editing purposes. In all cases it is important to note that the number shown in the 8700's displays is the event number of the sound just produced.

STOP/STEP - when touched, produces a single step mode of operation. Using the BACK SPACE and STOP/STEP keys allows editing of individual drum sounds. Typical use would be to "STEP" through the score until the drum sound to be replaced (as indicated by sound and event number) is reached. At this point, touching the "BACK" key causes the same drum to sound again (Note that since this is the same "EVENT" as when stepping forward, the displays will not change). The old drum sound may now be replaced with the new simply by touching the proper drum sound key.

CONTINUE - very similar to the "PLAY" key except that the score will pick up from the event currently in the displays.

DRUM SCORE - this command key allows scores in memory to be saved on cassette tapes. When touched, there will be a couple of seconds of apparent inactivity followed by a counting of the displays as the score is transferred from computer memory to tape. Before touching the "DUMP" key, place your recorder in the record mode and allow it to run for several seconds to get beyond the sub-standard tape sections typically found at the beginning of tape cassettes. Note that relays for tape motion are controlled as outlined in the CS-87 manual.

LOAD SCORE - similar to DUMP SCORE except that the memory of the computer is loaded from the cassette tape. Make sure that there is a cassette to be loaded before touching this control as the computer will wait for data transfer completion before continuing with any further action. If this contro is inadvertently touched, you may recover by pressing the reset key and running the program again. There is a soft start location location of sorts at \$014 which can often be used to start the program running without destroying the saved score.

STROBE DRUM - this special effect causes the score to be played at the current tempo rate, but essentially strikes each drum event many times rather than just once. The result is a very unusual bass instrument sounding voice.

EK-2A / 8700 Wiring Connections For use with Drumsys Program

NOTES

```
0010
0020
    0030
0040
0050 :*
             DRUMSYS 0.6
0060
    :*
0070
         8700/EK-2 DRUM OPERATING
0080
     *
          SYSTEM
0090
                   BY
     **
               JOHN SIMONTON
0100
     *
0110
     :*(C) 1978 - PAIR ELECTRONICS, INC*
0120
0130
     ;*************
0140
0150
0160 BUFF DL 00F0
     CNTR . DL 00EC
01.70
     EXP .DL 00EB
0180
0190
0200
     PNTR .DL 00E9
     DSP .DL 0820
DECD .DL FF00
BEEP .DL 0F22
0210
0220
0230
0240
     SCOR . DL 0100
0250 DUMY .DL 0086
0260 OUTP .DL 0840
0270 SNBT .DL 0E25
0280 CASS .DL 0EAA
0290
     :00E8
0300
     : S-TABLE (CONTROL CODES)
0310
0320
     .00E1
0330
     STBL . DL 00D1
0340
0350
     :00E0
0360
     : DRUM SIGNATURES
0370
0380
0390
0400
    9410
      . OR 10D1
0420
     0430
     TAPE . HS FF00800100010001
0440
     DSIG . HS FFFEFDF3F7EFDFBF
0450
0460
     CRL . HS 6A9D8D877CB2B9CD000820
0470
     OR 10ED
0480
0490
         .OR 10F6
0500
0510
     PAR1 . HS F6F7F8F9FAFBFCFDFF00
```

```
0520
                          OR 1000
                   9539
                   0540
                          ·************************
                    9559
                                           ::SPARE HOOK KEYS 8-F
1000-
        A9 86
                    0560
                          SPHK LDB 86
1002-
        85 39
                    0570
                               STA *ACTN+01:USED ONLY TO RE-START
1004-
        FΑ
                                            : SYSTEM.
                                                     IN LATER VERSIONS
                    0580
                               MOP
1005-
        EΑ
                    0590
                               NOP
                                            :WILL PROVIDE ADDITTIONAL
                   9699
                                            FEATURES
                   0610
        A9 00
1006-
                                            :PREPARE ACCUMULATOR AND
                    0620
                          STAR LDA 0
1008-
        85 E9
                    BERB
                               STR *PNTR
                                            :ZERO SCORE POINTER
        8D 20 08
100A-
                    0640
                               STA DSP
                                            :AND DISPLAYS
1000-
        ĤĤ
                    0650
                                            :PREPARE X REG AS POINTER
                               TAX
        9D 00 01
100E-
                   9669
                          SLPØ STA SCOR, X
                                            :AND USE IT TO CLEAR SCORE
1011-
        E8
                   9679
                               INX
1012-
        DØ FA
                   0680
                               BNE SLP0
                                            :LOOP UNTIL DONE
        20 53 10
1014-
                          SLP1 JSR RDKY
                    0690
                                            :GO READ THE KEYBOARD, ETC.
1017-
        BØ 1F
                    0700
                               BCS ACTN
                                            :AND IF NO NEW KEYS, BRANCH
        C9 10
1019-
                                            :NEW KEY - A "CONTROL" KEY?
                    0710
                          TSTS CMP 10
1018-
        BØ 16
                                            :YES - BRANCH TO CONTROL
                    9729
                               BCS CTRL
        C9 08
1010-
                    0730
                               CMP 08
                                            :ONE OF "SPARE" KEYS?
101F-
        BØ DF
                               BCS SPHK
                                            :YES- BRANCH
                   9749
                   0750
                                   **
                          NTRY LDA 86
                                            :DRUM ENTRY MODE, GET LINK
1021-
        A9 86
                   9760
                    0770
                               STA *ACTN+01:SET LINK
        85 39
1023-
        89 D9 10
                    0780
                               LDA DSIG, Y
                                           :GET DRUM SIGNATURE
1025-
                   0790
                               LDX *PNTR
                                            :GET SCORE POINTER
1028-
        A6 E9
                    0800
                               STA SCOR, X
                                            :SAVE DRUM SIG IN SCORE
102A-
        9D 00,01
                   0810
                               JSR PLAY
                                            :PLAY THE DRUM BEAT
102D-
        20 3E 10
                               JMP SLP1
                                            :LOOP FOR MORE
                   ดลวด
1030-
        40 14 10
                    0830
                          CTRL LDA STBL/Y
                                            :GET COMMAND ADDRESS LINK
1033~
        89 D1 00
        85 39
                    0840
                               STA *ACTN+01:AND SET LINK IN JSR DUMY
1036-
        20 86 00
                    0850
                          ACTN JSR DUMY
                                            : AND GO TO COMMAND SUBROUTINE
1038-
1038-
        40 14 10
                   0860
                               JMP SLP1
                                            :THEN LOOP FOR MORE
                   9879
                          :PLAY SUBROUTINE
                   9889
                   0890
                          PLAY LDY *EXP
103E-
        A4 EB
                    0900
                                            :GET EXPRESSION VARIABLE
1040-
        8D 49 08
                    0910
                               STR OUTP
                                            :OUTPUT CONTROL TO EK-2
1043-
        29 7F
                   0920
                               AND 7F
                                            :RESET STROBE BIT
1045-
        88
                    0930
                          PLAØ DEY
                                            :DELAY FOR THE EXP. TIME
                               BNE PLAG
        DØ FD
                                            :LOOP UNTIL DONE
1046-
                   0940
                                            : AND TURN DRUM "OFF"
1048-
        8D 40 08
                    0950
                               STA OUTP
104B-
        E6 E9
                    0960
                               INC *PNTR
                                            :INCREMENT SCORE POINTER
104D-
        86 E9
                    0970
                               LDX *PNTR
                                            :PLACE IN X REGISTER
104F-
        8E 20 08
                    0980
                               STX DSP
                                            :AND SHOW IN DISPLAYS
1052-
        60
                    0990
                               RTS
                                            :THEN RETURN
                   1000
                          :READ KEY-ALSO IMPORTANT TO TEMPO
                   1010
                   1020
        20 00 FF
                   1030
                          RDKY JSR DECD
                                            :PIEBUG KEYBOARD SUBROUTINE
1053~
        60 05
                    1040
                               BCS DLY
                                            :SAME KEY - JUST DELAY
1056-
1058-
        A2 00
                   1050
                               LDX 0
        86 EC
                               STX *CNTR
105A-
                   1060
                                            :ZERO TEMPO COUNTER
        60
                   1070
1050-
                               RTS
                         DLY LDX 20
1050-
        A2 20
                   1080
                                            :SET X AND Y REGISTER
        A0 3F
                   1090
                          NXTX LDY 3F
                                            :DELAY PARAMETERS
105F-
1061~
        88.
                   1100
                          DELY DEY
                                            HAND DO DELAY.
        DØ FD
                               BNE DELY
1062-
                   1110
                   1120
                               DEX
1064-
        CA
```

```
BNE NXTX
                                         :LOOP UNTIL DONE
                 1130
1065-
        DØ F8
                 1140
                             INC *CNTR
                                          :INCREMENT TEMPO COUNTER
        E6 EC
1067-
                                          : AND RETURN
                 1150
                             RTS
1069~
        68
                 1160
                       :: RUN SUBROUTINE
                 1170
                 1180
                 1190
                                          :COMMAND LINK TO "WAIT"
106A-
        89° 70
                 1200
                        RUN LDA 70
        85 39
                             STA *ACTN+01:SET COMMAND LINK
106C-
                 1210
        A9 00
106E-
                                         :PREPARE AND SET
                 1220
                        CYCL LDA 00
                             STA *PNTR
1070-
        85 E9
                                          :SCORE POINTER TO 0
                 1230
                        CONT LDX *PNTR
                                          :GET CURRENT SCORE POINTER
1072-
        R6 E9
                 1240
        BD 00 01 1250
1074-
                             LDA SCOR,X
                                         :GET CURRENT DRUM SIGNATURE
        FØ F5
                                          :ZERO, END OF SCORE-BRANCH
1077-
                 1260
                             BEQ CYCL
        20 3E 10 1270
                             JSR PLAY
                                          :GO PLAY DRUM SOUND, ETC.
1079-
                 1280
                                          :GET TEMPO COUNTER AND
        A5 ÉC
                       WAIT LDA *CNTR
107C-
        45 EA
107E-
                 1290
                             EOR *TMPO
                                         : COMPARE TO TEMPO VARIABLE
                             BNE RETN
                                          : IF NOT TIMED OUT, RETURN
1080-
        DØ 04
                 1300
                        OCNT STA *CNTR
                                          :TIMED OUT - ZERO COUNTER
        85 EC
                 1310
1082-
1084-
        FØ EC
                 1320
                             BEQ CONT
                                          :BRANCH ALWAYS TO PLAY, ETC.
                       RETN RTS
                                          : RETURN
                 1330
1086-
        60
                 1340
                        :SINGLE STEP SUBROUTINE
                 1350
                 1360
                 1370
                                 ale:de
         89 86
                 1380
                        STEP LDR 86
                                         :COMMAND LINK TO "RETN"
1087-
                             STA *ACTN+01:SET COMMAND LINK
                 1390
1089-
         85 39
                                         :BRANCH ALWAYS TO PLAY, ETC.
                 1400
                            RME CONT.
1088-
         DØ E5
                 1410
                       :BACKSPACE SUBROUTINE
                 1420
                 1430
                 1440
                                 skak
 108D-
                                          :COMMAND LINK TO "NEXT"
         A9 96
                 1450
                        BACK LDA 96
 108F-
         85 39
                 1460
                             STA *ACTN+01:SET COMMAND LINK
 1091-
                 1470
                             DEC *PNTR : SCORE POINTER BACK ONE
         C6 E9
 1093 -
         DØ DD
                 1480
                             BNE CONT
                                         :GO PLAY SCORE, ETC.
 1095-
         60
                 1490
                                         : AND RETURN
                             RTS
                 1500
 1096-
                                         :COMMAND LINK TO "RETN"
                        NEXT LDA 86
         A9 86
                 1510
 1098-
         85 39
                 1520
                             STR *ACTN+01:SET COMMAND LINK
 1098-
         C6 E9
                 1530
                             DEC *PNTR :: SCORE POINTER BACK ONE
                 1540
                                          : RETURN
 109C-
         60
                             RTS
                 1550
                       : TEMPO
                 1560
                 1570
                 1580
                                         :COMMAND LINK TO "NXT2"
                 1590
                        TMP
                             LDA 0A5
 109D-
          A9 A5
                             STA *ACTN+01:SET COMMAND LINK
                 1699
  109F-
          85 39
                 1610
                             LDA 00
                                        :INITIALIZE TEMPO COUNTER
  10A1-
          A9 00.
 10A3-
                 1620
                             STA *TMPO
                                          :AND START COUNTIN
          85 EA
                        NXT2 INC *TMPO
 10A5-
          E6 EA
                 1630
                                          :UNTIL NEXT COMMAND
                                          : RETURN
                 1640
                             RTS
 1087-
          69
                 1650
                        :SET UP FOR TAPE TRANSFER
                 1660
                 1670
  10A8-
          R2 07
                        STTP LDX 07
                                          :TRANSFER SEVEN BYTES
                 1680
  10AR-
          B5 01
                 1690
                        STP LDR *TAPE, X : GET PARAMETER
                 1700
  10AC-
          95 FØ
                             STA *BUFF, X : PLACE PARAMETER
 10AE-
          CA
                 1710
                             DEX
                                         :POINT TO NEXT
 108F-
          DØ F9
                             BNE STP
                                          :LOOP UNTIL ALL TRANSFERED
                 1720
```

10B1-	69	1730		RTS		THEN RETURN
•		1740	:		•	
		1750	: TAPE	IN E	AND OUT	ROUTINES
		1760	:			
1082-	20 A8 10	1770	TOUT	JSR	STTP	:SET UP PARAMETERS
1085-	A9 DD	1780		LDA	0D0	:SET DUMP "SWITCH"
1087-	DØ Ø5	1790		BNE	DO	:BRANCH ALWAYS
1089	20 AS 10	1800	TIN	JSR	STTP	:SET UP PARAMETERS
10BC-	A9 11	1810		LDA	11	:SET LOAD "SWITCH"
10BE-	20 25 0E	1820	DO	JSR	SNBT	:TURN ON RELAYS
1001-	20 AA 0E	1830		JSR	CASS	:DO CASSETTE ROUTINE
		1840	:		aktaki	
1004-	A9 86	1850		LDA	86	:COMMAND LINK TO "RETN"
1006-	85 39	1860		STA	*ACTN+01	:SET LINK
10C8-	18	1870		CLC		:PREPARE FOR BEEP
1009-	20 22 0F	1880		JSR.	BEEP	:TURN OFF RELAYS AND BEEP
1000-	60	1890		RT5		:AND RETURN
		1900	:			
		1910	:STRO	BE C	RUM EFFE	СТ
		1920	:			
10CD-	C6 E9	1930	STRB	DEC	*PNTR	:PREPARE TO GET SAME DRUM
10CF-	4C 72 10	1940		JMP	CONT	:PLAY DRUM
		1950	:			
		1960	:			
		1970	:			
		1980	:			
		1990	END	. EN		

- NOTES